See also Google Scholar, ResearchGate, or Semantic Scholar.
My ORCID is 0000-0002-4060-1738.
Equal contributions are denoted by *, and (equal) senior authorship by #.
Preprints
- 
    Pretrain-test task alignment governs generalization in in-context learning 
 Letey, M. I., Zavatone-Veth, J. A., Lu, Y. M., and Pehlevan, C.
 [arXiv]
- 
    Convergent motifs of early olfactory processing are recapitulated by layer-wise efficient coding 
 Fernández del Castillo, J. C., Pashakhanloo, F., Murthy, V. N.#, and Zavatone-Veth, J. A.#
 [bioRxiv]
- 
    A note on the dynamics of extended-context disordered kinetic spin models 
 Zavatone-Veth, J. A. and Pehlevan, C.
 [arXiv]
- 
    Dynamically learning to integrate in recurrent neural networks 
 Bordelon, B., Cotler, J., Pehlevan, C., and Zavatone-Veth, J. A.
 [arXiv]
- 
    Combining sampling methods with attractor dynamics in spiking models of head direction systems 
 Pjanovic, V., Zavatone-Veth, J. A., Masset, P., Keemink, S. W.#, and Nardin, M.#
 [bioRxiv]
- 
    Two-point deterministic equivalence for stochastic gradient dynamics in linear models 
 Atanasov, A.*, Bordelon, B.*, Zavatone-Veth, J. A.*, Paquette, C., and Pehlevan, C.
 [arXiv]
- 
    Spectral regularization for adversarially-robust representation learning 
 Yang, S., Zavatone-Veth, J. A., and Pehlevan, C.
 [arXiv] [code]
- 
    Scaling and renormalization in high-dimensional regression 
 Atanasov, A., Zavatone-Veth, J. A., and Pehlevan, C.
 [arXiv] [code]
- 
    Neural networks learn to magnify areas near decision boundaries 
 Zavatone-Veth, J. A., Yang, S., Rubinfien, J. A., and Pehlevan, C.
 [arXiv] [code]
Articles
2025
- 
    Data symmetries generate drifting similarity matrices in manifold-tiling neural codes 
 Pashakhanloo, F., and Zavatone-Veth, J. A.
 Unifying Representations in Neural Models Workshop (UniReps), NeurIPS (2025).
- 
    Perspective: summary statistics of learning 
 Zavatone-Veth, J. A.#, Bordelon, B.#, and Pehlevan, C.#
 Unifying Representations in Neural Models Workshop (UniReps), NeurIPS (2025).
- 
    Summary statistics of learning link changing neural representations to behavior 
 Zavatone-Veth, J. A.#, Bordelon, B.#, and Pehlevan, C.#
 Frontiers in Neural Circuits 19:1618351 (2025).
 [link] [arXiv]
 Invited contribution to the Neuro-inspired computation Research Topic, edited by Takao Hensch and Kenny Blum.
- 
    Asymptotic theory of in-context learning by linear attention 
 Lu, Y. M., Letey, M. I., Zavatone-Veth, J. A.*, Maiti, A.*, and Pehlevan, C.
 Proceedings of the National Academy of Sciences of the United States of America (PNAS) 122 (28) e2502599122 (2025).
 [link] [arXiv] [code]
- 
    Two-point deterministic equivalence for SGD in random feature models 
 Atanasov, A.*, Bordelon, B.*, Zavatone-Veth, J. A.*, Paquette, C., and Pehlevan, C.
 Workshop on High-dimensional Learning Dynamics (HiLD), ICML 2025.
 [OpenReview]
- 
    A model for place field reorganization during reward maximization 
 Kumar, M. G., Bordelon, B., Zavatone-Veth, J. A., and Pehlevan, C.
 International Conference on Machine Learning (ICML) 42. (2025).
 [bioRxiv]
- 
    Risk and cross validation in ridge regression with correlated samples 
 Atanasov, A.*, Zavatone-Veth, J. A.*, and Pehlevan, C.
 International Conference on Machine Learning (ICML) 42. (2025).
 [arXiv] [code]
- 
    A model for place field reorganization during reward maximization 
 Kumar, M. G., Bordelon, B., Zavatone-Veth, J. A., and Pehlevan, C.
 Workshop on Representational Alignment (Re-Align), ICLR (2025).
 [OpenReview]
- 
    Nadaraya-Watson kernel smoothing as a random energy model 
 Zavatone-Veth, J. A.#, and Pehlevan, C.
 Journal of Statistical Mechanics: Theory and Experiment 013404. (2025)
 [link] [arXiv]
2024
- 
    Long Sequence Hopfield Memory 
 Chaudhry, H. T., Zavatone-Veth, J. A., Krotov, D., and Pehlevan, C.
 Journal of Statistical Mechanics: Theory and Experiment 104024. (2024)
 [link]
 Invited contribution to the Machine Learning 2024 special issue; updated version of our NeurIPS 2023 paper.
- 
    Learning curves for deep structured Gaussian feature models 
 Zavatone-Veth, J. A., and Pehlevan, C.
 Journal of Statistical Mechanics: Theory and Experiment 104022. (2024)
 [link]
 Invited contribution to the Machine Learning 2024 special issue; updated version of our NeurIPS 2023 paper.
- 
    Adversarially-robust representation learning through spectral regularization of features 
 Yang, S., Zavatone-Veth, J. A., and Pehlevan, C.
 Workshop on Symmetry and Geometry in Neural Representations, NeurIPS (2024).
 [OpenReview]
- 
    In-context learning by linear attention: exact asymptotics and experiments 
 Lu, Y. M., Letey, M. I., Zavatone-Veth, J. A.*, Maiti, A.*, and Pehlevan, C.
 Workshop on Mathematics of Modern Machine Learning, NeurIPS (2024).
 [OpenReview]
- 
    Partial observation can induce mechanistic mismatches in data-constrained RNNs 
 Qian, W., Zavatone-Veth, J. A., Ruben, B. S., and Pehlevan, C.
 Workshop on NeuroAI, NeurIPS (2024)
 [OpenReview]
- 
    Partial observation can induce mechanistic mismatches in data-constrained models of neural dynamics 
 Qian, W., Zavatone-Veth, J. A., Ruben, B. S., and Pehlevan, C.
 Advances in Neural Information Processing Systems (NeurIPS) 37. (2024)
 [link] [bioRxiv]
- 
    Statistical mechanics of Bayesian inference and learning in neural networks 
 Zavatone-Veth, J. A.
 PhD dissertation, Department of Physics, Harvard University.
 [ProQuest] [Harvard DASH]
2023
- 
    Long Sequence Hopfield Memory 
 Chaudhry, H. T., Zavatone-Veth, J. A., Krotov, D., and Pehlevan, C.
 Associative Memory and Hopfield Networks Workshop Oral, NeurIPS (2023)
 [OpenReview]
- 
    Neural circuits for fast Poisson compressed sensing in the olfactory bulb 
 Zavatone-Veth, J. A.*, Masset, P.*, Tong, W. L., Zak, J. D., Murthy, V. N.#, and Pehlevan, C.#
 Advances in Neural Information Processing Systems (NeurIPS) 36. (2023)
 [link] [OpenReview] [bioRxiv] [code]
- 
    Long Sequence Hopfield Memory 
 Chaudhry, H. T., Zavatone-Veth, J. A., Krotov, D., and Pehlevan, C.
 Advances in Neural Information Processing Systems (NeurIPS) 36. (2023)
 [link] [OpenReview] [arXiv] [code]
- 
    Learning curves for deep structured Gaussian feature models 
 Zavatone-Veth, J. A., and Pehlevan, C.
 Advances in Neural Information Processing Systems (NeurIPS) 36. (2023)
 [link] [OpenReview] [arXiv]
- 
    Replica method for eigenvalues of real Wishart product matrices 
 Zavatone-Veth, J. A., and Pehlevan, C.
 SciPost Physics Core 6 (2): 026. (2023)
 [link] [arXiv]
2022
- 
    Asymptotics of representation learning in finite Bayesian neural networks 
 Zavatone-Veth, J. A., Canatar, A., Ruben, B. S., and Pehlevan, C.
 Journal of Statistical Mechanics: Theory and Experiment 114008. (2022)
 [link]
 Invited contribution to the Machine Learning 2022 special issue; updated version of our NeurIPS paper.
- 
    Contrasting random and learned features in deep Bayesian linear regression 
 Zavatone-Veth, J. A., Tong, W. L., and Pehlevan, C.
 Machine Learning and the Physical Sciences Workshop, NeurIPS. (2022)
 [link]
- 
    Training shapes the curvature of shallow neural network representations 
 Zavatone-Veth, J. A.*, Rubinfien, J. A.*, and Pehlevan, C.
 Symmetry and Geometry in Neural Representations (NeurReps) Workshop, NeurIPS. (2022)
 [OpenReview]
- 
    Natural gradient enables fast sampling in spiking neural networks 
 Masset, P.*, Zavatone-Veth, J. A.*, Connor, J. P., Murthy, V. N.#, and Pehlevan, C.#
 Advances in Neural Information Processing Systems (NeurIPS) 35. (2022)
 [link] [OpenReview] [bioRxiv] [code]
- 
    Excitatory and inhibitory neural dynamics jointly tune motion detection 
 Gonzalez-Suarez, A. D., Zavatone-Veth, J. A., Chen, J., Matulis, C., Badwan, B. A., and Clark, D. A.
 Current Biology 32 (17) 3659-3675. (2022)
 [link] [bioRxiv] [code]
- 
    Contrasting random and learned features in deep Bayesian linear regression 
 Zavatone-Veth, J. A., Tong, W. L., and Pehlevan, C.
 Physical Review E 105 (6): 064118. (2022)
 [link] [arXiv]
- 
    On neural network kernels and the storage capacity problem 
 Zavatone-Veth, J. A., and Pehlevan, C.
 Neural Computation 34 (5): 1136–1142. (2022)
 [link] [arXiv]
- 
    Parallel locomotor control strategies in mice and flies 
 Gonçalves, A. I.*, Zavatone-Veth, J. A.*, Carey, M. R.#, and Clark, D. A.#
 Current Opinion in Neurobiology 73: 102516. (2022)
 [link] [arXiv]
- 
    Drifting neuronal representations: Bug or feature? 
 Masset, P.*, Qin, S.*, and Zavatone-Veth, J. A.*
 Biological Cybernetics 116: 253-266. (2022)
 [link]
2021
- 
    Depth induces scale-averaging in overparameterized linear Bayesian neural networks 
 Zavatone-Veth, J. A., and Pehlevan, C.
 55th Asilomar Conference on Signals, Systems, and Computers. (2021)
 [link] [arXiv]
- 
    Asymptotics of representation learning in finite Bayesian neural networks 
 Zavatone-Veth, J. A., Canatar, A., Ruben, B. S., and Pehlevan, C.
 Advances in Neural Information Processing Systems (NeurIPS) 34. (2021)
 [link] [OpenReview] [arXiv] [code]
- 
    Exact marginal prior distributions of finite Bayesian neural networks 
 Zavatone-Veth, J. A., and Pehlevan, C.
 Advances in Neural Information Processing Systems (NeurIPS) 34 Spotlight. (2021)
 [link] [OpenReview] [arXiv] [code]
- 
    Activation function dependence of the storage capacity of treelike neural networks 
 Zavatone-Veth, J. A., and Pehlevan, C.
 Physical Review E (Letter) 103 (2): L020301. (2021)
 [link] [arXiv]
2020
- 
    Statistical structure of the trial-to-trial timing variability in synfire chains 
 Obeid, D., Zavatone-Veth, J. A., and Pehlevan, C.
 Physical Review E 102 (5): 052406. (2020)
 [link] [bioRxiv]
- 
    Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila 
 DeAngelis, B. D.*, Zavatone-Veth, J. A.*, Gonzalez-Suarez, A. D., and Clark, D. A.
 eLife 9: e54183. (2020)
 [link] [code]
- 
    A minimal synaptic model for direction selective neurons in Drosophila 
 Zavatone-Veth, J. A., Badwan, B. A., and Clark, D. A.
 Journal of Vision 20 (2): 2. (2020)
 [link] [bioRxiv] [code]
2019
- 
    Using slow frame rate imaging to extract fast receptive fields 
 Mano, O., Creamer, M. S., Matulis, C. A., Salazar-Gatzimas, E., Chen, J., Zavatone-Veth, J. A., and Clark, D. A.
 Nature Communications 10: 4979. (2019)
 [link] [code]
- 
    Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors 
 Badwan, B. A., Creamer, M. S., Zavatone-Veth, J. A., and Clark, D. A.
 Nature Neuroscience 22: 1318–1326. (2019)
 [link] [code]
- 
    The manifold structure of limb coordination in walking Drosophila 
 DeAngelis, B. D.*, Zavatone-Veth, J. A.*, and Clark, D. A.
 eLife 8: e46409. (2019)
 [link] [erratum] [code]
