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Abstract

In these notes, we discuss what may be the simplest random matrix problem to which one can
apply the replica trick: the limiting log-determinant of a Wishart matrix. This computation is simple
to the point of being unrepresentative of most replica computations, but it introduces some of the
core concepts.
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1 Introduction

Consider a d-dimensional Wishart matrix W with p degrees of freedom. That is, let

W=
1
p

XX⊤ (1)

where X ∈ Rd×p has i.i.d. Gaussian elements X i j ∼ N (0,1). In my previous notes [7], I showed how
the replica trick may be used to compute the averages of the minimum and maximum eigenvalues of
this matrix in the limit d, p →∞ with p/d → α. In revisiting these notes following a question from
Binxu Wang, it has occurred to me that there is a question one can pose about Wishart matrices with an
answer that can be obtained via a closely related but slightly simpler replica computation. This question
is extremely simple: for α > 1, what is the limiting value of

φ(α) = lim
d,p→∞
p/d→α

EW
1
d

logdet(W)? (2)
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Though this question may seem at first glance somewhat contrived, it is in fact (a) in itself a problem one
encounters in the study of high-dimensional Bayesian inference and (b) it leads to a replica computation
that is closely related to the computation of the full spectrum of eigenvalues of W, but is somewhat
simpler as all integrals are real. For details of the spectral density computation, see [1, 2, 8] or Song
Mei’s excellent blog posts [3]. Before diving in, I note that I will be somewhat sparing with references
and general exposition here; see my longer previous note for more details [7].

In the replica approach to compuuting the log-determinant, we use the Gaussian integral identity

det(W)−1/2 =

∫

Rd

du
(2π)d/2

e−
1
2 u⊤Wu (3)

which is well-defined as W is invertible with probability 1 so long as p ≥ d. From a statistical mechanics
perspective, we can then view the problem as a Gaussian spin model with interaction matrix W, with a
Gibbs distribution over states given by

pW(u) =
1

(2π)d/2 det(W)−1/2
e−

1
2 u⊤Wu (4)

for each fixed realization of W [4]. In this picture, det(W)−1/2 is the ‘partition function,’ and the quantity
of interest

φ(α) = − lim
d,p→∞
p/d→α

EW
2
d

log

∫

Rd

du
(2π)d/2

e−
1
2 u⊤Wu (5)

is the limiting value of the free energy, averaged over realizations of the interaction matrix W. In this
language, W is referred to as ‘quenched’ randomness because each realization of W defines a distribution
over the state variable u. This physical perspective can yield useful intuition, though it is not necessary.

2 A warmup: the annealed average

We must now contend with the need to compute the average of a logarithm, which is the challenge by
which the replica trick is motivated. Before jumping into the full replica computation, we first consider
what is known as an ‘annealed’ computation, which we will eventually find to be exact. The ‘annealed’
approximation starts with the observation that, by Jensen’s inequality, we have

EW logdet(W)≥ logEW det(W) (6)

by the concavity of the logarithm. Therefore, we have

φ(α)≤ φann(α), (7)

where

φann(α) = − lim
d,p→∞
p/d→α

2
d

logEW

∫

Rd

du
(2π)d/2

e−
1
2 u⊤Wu. (8)

We now evaluate φann(α), which is straightforward to compute. Interchanging the average over W with
the integral over u and using the fact that the columns of X are i.i.d. Gaussian vectors x∼N (0, Id), we
can compute

EWe−
1
2 u⊤Wu = EXe−

1
2 u⊤XX⊤u/p =

�

1+
1
p
∥u∥2

�−p/2

. (9)
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Then, we are left with the integral
∫

Rd

du
(2π)d/2

�

1+
1
p
∥u∥2

�−p/2

. (10)

To evaluate this integral, we use spherical coordinates with ∥u∥ = u. The angular integral is trivial as the
integrand is radial, and yields the surface area of the (d − 1)-sphere of unit radius: 2πd/2/Γ (d/2). Thus,
we have

2
2d/2Γ (d/2)

∫ ∞

0

du ud−1
�

1+
1
p

u2
�−p/2

. (11)

Making the change of variables q = u2/d, this becomes
�

d
2

�d/2 1
Γ (d/2)

∫ ∞

0

dq
q

ed g(q) (12)

where

g(q) =
1
2

log q−
1
2
α log

�

1+
1
α

q
�

. (13)

To summarize our progress, we have

φann(α) = − lim
d→∞

2
d

log

�

�

d
2

�d/2 1
Γ (d/2)

�

− lim
d→∞

2
d

log

∫ ∞

0

dq
q

e−d g(q). (14)

The first term is easy to compute using Stirling’s approximation for the Γ function,
�

d
2

�d/2 1
Γ (d/2)

=
1
2

�

d
π

�1/2

ed/2
�

1+O
�

1
d

��

, (15)

which yields

lim
d→∞

2
d

log

�

�

d
2

�d/2 1
Γ (d/2)

�

= 1. (16)

Considering the integral over q, the form of the integrand suggests that we may apply Laplace’s method.
For q ∈ [0,∞), and α > 1, g(q) is a non-positive function with g(q)→−∞ as q ↓ 0 or q→∞. It has a
unique maximum at

q∗ =
α

α− 1
, (17)

where it takes the value

g(q∗) = −
1
2
(α− 1) log

α

α− 1
. (18)

This can be seen from the fact that q∗ is the only positive real solution to 0= g ′(q∗) =
1
2q −

1
2(1+q/α) and

the fact that

g ′′(q∗) = −
1
2

�

α− 1
α

�3

. (19)

Thus, from Laplace’s method, we have that

lim
d→∞

2
d

log

∫ ∞

0

dq
q

e−d g(q) = 2g(q∗). (20)

Collecting these results, we have that

φann(α) = (α− 1) log
α

α− 1
− 1. (21)
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3 The replica trick

We claim that the annealed computation in this case gives not only a lower bound on φ but in fact
precisely determines it. How could we show this? More generally, how could we handle the average of
the logarithm in cases where the annealed average is not exact? The replica trick provides a physicist’s
answer to these questions.

Fundamentally, the replica trick is based on the variants of identity

E log Z = lim
n→0

1
n

logEZn, (22)

for suitably well-behaved positive random variables Z . From this starting point, the replica trick makes
two important assumptions:

1. It suffices to compute integer moments EZn for n ∈ N, and then analytically continue to n→ 0.

2. The ‘thermodynamic’ limit d →∞ can be interchanged with the limit n→ 0.

These two assumptions are not always rigorously justified. The first is particularly subtle, as there are
important problems for which the analytic continuation of EZn is not unique. For some references,
see my other notes [7]. For the simple problem at hand, however, we will not encounter any such
complications.

With this in mind, we compute

φn(α) = − lim
d,p→∞
p/d→α

2
d

logEW det(W)−n/2 (23)

for n ∈ N, with the hope that

φ(α) = lim
n→0

φn(α)
n

. (24)

The expectation over W is easy to evaluate:

EW det(W)−n/2 = EW

�∫

Rd

du
(2π)d/2

e−
1
2 u⊤Wu

�n

(25)

= EW

∫ n
∏

a=1

dua

(2π)d/2
e−

1
2

∑n
a=1 u⊤a Wua (26)

=

∫ n
∏

a=1

dua

(2π)d/2
EXe−

1
2p

∑n
a=1 u⊤a XX⊤ua (27)

=

∫ n
∏

a=1

dua

(2π)d/2
�

Ex∼N (0,Id )e
− 1

2p

∑n
a=1 u⊤a xx⊤ua

�p
(28)

=

∫ n
∏

a=1

dua

(2π)d/2
det

�

Id +
1
p

n
∑

a=1

uau⊤a

�−p/2

. (29)

Using the Weinstein–Aronszajn identity, we can re-write the d × d determinant as a n× n determinant,
whose size remains constant as d →∞:

det

�

Id +
1
p

n
∑

a=1

uau⊤a

�

= det
�

In +
1
α

Q
�

, (30)
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where we have defined the Gram matrix

Qab =
1
d

u⊤a ub. (31)

Now, in analogy to what we did in the annealed computation, we would like to change variables from ua
to Qab. To do this, we use a standard trick: we write

1=

∫

dQ
∏

a≤b

δ

�

Qab −
1
d

u⊤a ub

�

, (32)

where the integral is taken over all positive-definite n× n matrices. Then, we have

EW det(W)−n/2 =

∫

dQ det
�

In +
1
α

Q
�−p/2∫ n

∏

a=1

dua

(2π)d/2

∏

a≤b

δ

�

Qab −
1
d

u⊤a ub

�

. (33)

The integral

S(Q) =

∫ n
∏

a=1

dua

(2π)d/2

∏

a≤b

δ

�

Qab −
1
d

u⊤a ub

�

(34)

is precisely the normalized volume of states with a fixed overlap Q, and thus represents an ‘entropic’
contribution. Put another way, we want to know the Lebesgue measure of the set of n vectors ua ∈ Rd

with Gram matrix Q. There are a variety of approaches by which this integral could be evaluated
asymptotically for large d, the most commonly-used one in replica computations being to introduce
further auxiliary variables (see [7]). In this case, however, we may compute the entropic term directly;
in Appendix A we show that it evaluates to

∫ n
∏

a=1

dua

(2π)d/2

∏

a≤b

δ

�

Qab −
1
d

u⊤a ub

�

= Cd,n det(Q)(d−n−1)/2 (35)

for

Cd,n =
�

d
2π

�dn/2 n
∏

a=1

π(d−a+1)/2

Γ [(d − a+ 1)/2]
, (36)

which reduces to the corresponding result in the annealed case when we set n= 1. Thus, we have

EW det(W)−n/2 = Cd,n

∫

dQ ed g(Q) det(Q)−(n+1)/2 (37)

where

g(Q) =
1
2

logdet(Q)−
1
2
α log det

�

In +
1
α

Q
�

. (38)

Then, we have

lim
d,p→∞
p/d→α

1
d

logdet(W)−n/2 = lim
d→∞

1
d

log Cd,n + lim
d→∞

1
d

log

∫

dQ ed g(Q) det(Q)−(n+1)/2. (39)
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Based on our discussion in the annealed case, it is easy to see that for any fixed n we have

lim
d→∞

1
d

log Cd,n =
n
2

. (40)

Considering the integral term

lim
d→∞

1
d

log

∫

dQ ed g(Q) det(Q)−n, (41)

we observe that

δg
δQ
=

1
2

Q−1 −
1
2

�

In +
1
α

Q
�−1

(42)

from which we can see that g(Q) has a single stationary point among the symmetric positive-definite
matrices at

Q∗ =
α

α− 1
In. (43)

We claim that for any integer n this is a maximum. To do so, we consider the Hessian

∂ 2 g
∂Qab∂Qcd

=
∂

∂Qcd

�

1
2

Q−1 −
1
2

�

In +
1
α

Q
�−1

�

ab
(44)

= −
1
2
(Q−1)ac(Q

−1)bd +
1

2α

�

In +
1
α

Q
�−1

ac

�

In +
1
α

Q
�−1

bd
, (45)

which when evaluated at Q∗ gives

∂ 2 g
∂Qab∂Qcd

�

�

�

�

Q=Q∗

= −
1
2

�

α− 1
α

�3

δacδbd . (46)

Thus, if one vectorizes the matrix Q, the Hessian at the stationary point is diagonal and has negative
diagonal entries. Then, as in the annealed case, the integral is dominated by this stationary point—in
the present setting this is justified by the method of steepest descent, a wide-ranging generalization of
Laplace’s method—and we have

lim
d→∞

1
d

log

∫

dQ ed g(Q) det(Q)−(n+1)/2 = g(Q∗) (47)

= −
n
2
(α− 1) log

α

α− 1
. (48)

Combining these results, we find that

φn(α) = nφann(α), (49)

from which we can see that

φ(α) = lim
n→0

1
n
φn(α) = lim

n→0
φann(α) = φann(α). (50)

In this case, the analytic continuation to n→ 0 is clearly unique; the formal justification for this comes
from Carlson’s theorem. This justifies our claim that the annealed result is exact.
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From a physical perspective, what we have found is that the replicas become uncorrelated in the
limit d →∞. At any fixed n, this can be seen more directly from the interpretation of the Gaussian
integral as a system of interacting units.1 Let 〈·〉 denote averaging with respect to the Gibbs measure for
a fixed realization of W, i.e.,

〈·〉=
∫

du pW(u)(·). (51)

Then, if we define 〈·〉n to be the average over the replicated system for a fixed n ∈ N,

〈·〉n =
∫ n
∏

a=1

dua

n
∏

a=1

pW(u)(·), (52)

we can see that for any distinct replicas b ̸= a we have


1
d

u⊤a ub

·

=
1
d
〈ua〉⊤〈ub〉 (53)

=
1
d
∥〈u〉∥2 (54)

as for a fixed W the replicas are uncoupled and equivalent. But, observing that the Gibbs distribution is
symmetric in the sense that

pW(−u) = pW(u) (55)

for any u, we clearly have

〈u〉= 0 (56)

for any W. Now, in the limit d →∞, the argument above implies that the saddle-point value gives the
average of Q with respect to the Gibbs distribution, i.e.,

(Q∗)ab = lim
d→∞
EW



1
d

u⊤a ub

·

. (57)

But, we have just seen that the right-hand-side of this expression vanishes for b ̸= a, which is consistent
with our previous finding that Q∗ is diagonal.

4 Concluding thoughts

To conclude, we have shown that

φ(α) = (α− 1) log
α

α− 1
− 1. (58)

We note that this result may also be obtained using the Marchenko-Pastur theorem, which gives the
asymptotic distribution of eigenvalues of a Wishart matrix. This approach is detailed in a StackExchange
post,2 which, interestingly enough, uses the replica trick to handle the logarithm!

1Two comments are in order: First, I learned this argument from Haim Sompolinsky in a lecture on [5]. Second, I will not
worry too much about limits in n here.

2https://math.stackexchange.com/questions/2250884/integration-over-the-marchenko-pastur-distribution
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Throughout this note, I have tried to be as explicit as possible, and spell out all intermediate steps.
This contrasts with most expositions of the replica method—including my own previous notes [7]—
which sweep some things under the rug. However, thanks to the simplicity of this example, we have
not encountered many of the challenges present in most replica computations. In particular, the saddle
point in Q could be computed exactly at any n without making an Ansatz on the form of the matrix. This
is not representative of most replica computations. For a slightly more complicated example, see my
existing notes on the minimum and maximum eigenvalues of Wishart matrices [7].
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A Evaluation of the entropic integral

In this appendix, we show that for an n× n real symmetric positive-definite matrix Q one has

Id,n(Q) =

∫ n
∏

a=1

dua

∏

a≤b

δ(Qab − u⊤a ub) =

� n
∏

a=1

π(d−a+1)/2

Γ [(d − a+ 1)/2]

�

det(Q)(d−n−1)/2 (59)

for ua ∈ Rd , which leads to the expression for the entropic integral given in the main text after a re-scaling.
This is closely related to the derivation of the probability density function of a Wishart distribution,
except for the fact that integration over ua is performed with respect to a flat measure rather than a
Gaussian one.

With this relationship in mind, we will give a proof that closely follows Wishart’s derivation of his
eponymous probability density [6]. An analogous but slightly algebraically simpler proof follows by
noting that we may work in coordinates where Q is diagonal. Putting that idea aside, we proceed by
induction on n. We begin with the base case n= 1:

Id,n=1(Q) =

∫

Rd

dua δ(Q− ∥u∥2). (60)

This integral of course gives the surface area of the (d − 1)-sphere of radius Q1/2, though we must be
careful to account for the fact that the constraint is on the square of the radius r = ∥u∥: δ(Q− r2), which
introduces a Jacobian factor of 1/|∂r(Q− r2)| = 1/(2r). Thus, using the well-known fact that the surface
area of the unit sphere in d dimensions is 2πd/2/Γ (d/2), we have

Id,n=1(Q) =
πd/2

Γ (d/2)
Q(d−2)/2, (61)

which is the desired result.
We now consider some n > 1. As it will prove useful, we introduce the notation Qm to represent

the m×m matrix with elements Qab for a, b = 1, . . . , m, which by assumption is symmetric and positive-
definite. On the induction hypothesis, we have that

Id,n(Qn)

Id,n−1(Qn−1)
=

π(d−n+1)/2

Γ [(d − n+ 1)/2]
det(Qn)(d−n−1)/2

det(Qn−1)(d−n)/2
. (62)

To show that this recurrence holds, we proceed by isolating the integral over un:

Id,n(Qn) =

∫ n−1
∏

a=1

dua

∏

1≤a≤b≤n−1

δ(Qab − u⊤a ub)

∫

dun

n
∏

a=1

δ(Qan − u⊤a un). (63)

Now we can consider the integral
∫

dun

n
∏

a=1

δ(Qan − u⊤a un) (64)

in isolation, with u1, . . . ,un−1 fixed vectors satisfying ua · ub =Qab for a, b = 1, . . . , n− 1. As we assume
Qn−1 is full-rank, the set of vectors ua for a = 1, . . . , n−1 are linearly independent, so we may decompose
un into a linear combination of those vectors plus a component u⊥n orthogonal to their span:

un =
n−1
∑

a=1

vaua + u⊥n . (65)
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We would like to change variables in the integral to this representation. As the orthogonal complement
is d − (n− 1)-dimensional, we may write u⊥n = Pn−1zn, where zn ∈ Rd−n+1 and Pn−1 ∈ Rd,d−n+1 is a
projector satisfying u⊤a Pn−1 = 0 for all a = 1, . . . , n − 1 and P⊤n−1Pn−1 = Id−n+1. Then, we have the
Jacobian

∂ un

∂ (v,z)
=
�

u1, · · · ,un−1,Pn−1
�

. (66)

Using the orthogonality constraint, we can compute that
�

�

�

�

det
∂ un

∂ (v,z)

�

�

�

�

= det(Qn−1)
1/2. (67)

With this decomposition, we have

∥un∥2 =
n−1
∑

a,b=1

Qabvavb + ∥u⊥n ∥
2 (68)

and

un · ua =
n−1
∑

b=1

Qabvb. (69)

Thus, the integral over un becomes

det(Qn−1)
1/2

∫

Rn−1

dv

∫

Rd−n+1

dzδ
�

Qnn − v⊤Qn−1v− ∥z∥2
�

n−1
∏

a=1

δ

�

Qan −
n−1
∑

b=1

Qabvb

�

(70)

We now make a further change of variables

v= Q−1
n−1s (71)

which has Jacobian determinant det(Qn−1)−1, yielding

det(Qn−1)
−1/2

∫

Rn−1

ds

∫

Rd−n+1

dzδ
�

Qnn − s⊤Q−1
n−1s− ∥z∥2

�

n−1
∏

a=1

δ (Qan − sa) . (72)

The integral over s is now of course easy to evaluate, giving

det(Qn−1)
−1/2

∫

Rd−n+1

dzδ

 

Qnn −
n−1
∑

a,b=1

(Q−1
n−1)abQanQbn − ∥z∥2

!

. (73)

The Schur complement formula implies that

Qnn −
n−1
∑

a,b=1

(Q−1
n−1)abQanQbn =

det(Qn)
det(Qn−1)

(74)

leaving us with

det(Qn−1)
−1/2

∫

Rd−n+1

dzδ
�

det(Qn)
det(Qn−1)

− ∥z∥2
�

. (75)
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This is, at last, another integral over the surface of a sphere, so, accounting for the fact that the constraint
is on the square of the radius as we did with n= 1, we have

det(Qn−1)
−1/2 π(d−n+1)/2

Γ [(d − n+ 1)/2]

�

det(Qn)
det(Qn−1)

�(d−n−1)/2

=
π(d−n+1)/2

Γ [(d − n+ 1)/2]
det(Qn)(d−n−1)/2

det(Qn−1)(d−n)/2
. (76)

Therefore, we find that

Id,n(Qn) =

∫ n−1
∏

a=1

dua

∏

1≤a≤b≤n−1

δ(Qab − u⊤a ub)
π(d−n+1)/2

Γ [(d − n+ 1)/2]
det(Qn)(d−n−1)/2

det(Qn−1)(d−n)/2
(77)

=
π(d−n+1)/2

Γ [(d − n+ 1)/2]
det(Qn)(d−n−1)/2

det(Qn−1)(d−n)/2
Id,n−1(Qn−1), (78)

which proves the claimed recurrence, and thus concludes the proof.
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