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Abstract

In these expository notes, we seek to obtain a better understanding of Zhong et al. [9]’s results on the storage
capacity of perceptrons subjected to constraints on their weight distributions by recapitulating their results
using alternative methods of imposing the constraint.

These notes were originally drafted in June 2022. Since then, they have been proofread and edited for clarity.
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1 Introduction
We consider a simple perceptron

y(x) = sign

(
1√
N

w · x
)
, (1)

and the usual task of memorizing P independent and identically distributed symmetric binary patterns {(xµ, yµ)}.
Our goal is to determine the storage capacity of the perceptron subject to the constraint that the empirical

weight distribution

Fw(w) =
1

N

N∑
j=1

Θ(w − wj) (2)

tends to some desired distribution F (w) in the thermodynamic limit N → ∞. In a recent paper, Zhong et al.
[9] approach this problem by enforcing a hard constraint that the Fourier transforms of the empirical and target
densities (that is, the characteristic functions of the two distributions) coincide, which if the target distribution
is continuous is in general only satisfiable in the thermodynamic limit. In these notes, we will explore alternative
approaches to this problem, which recover Zhong et al. [9]’s result using softer constraints.

We will always include the standard spherical constraint on the weight vector, i.e., we demand that ∥w∥22 = N .
This implies that the second moment of the target distribution must be equal to unity in order for the constraints to
be consistent, as ∫ ∞

−∞
dFw(w)w

2 =
1

N

N∑
j=1

w2
j = 1 (3)

under the spherical constraint.
We will not consider replica symmetry breaking; nor did Zhong et al. [9]. To precisely determine the capacity,

RSB must be considered, as Zhong et al. [9] illustrate through the example of a bimodal Gaussian target distribution.
When the separation between the modes is large relative to their width, the resulting model resembles a perceptron
with binary weights. Following Krauth and Mézard [6], RSB affects the capacity of the binary perceptron, though
only at the one-step level. We leave a full analysis of how RSB affects the capacity of perceptrons with weights
constrained to follow more general distributions to future work.

These notes are far from self-contained: we take the results of the standard Gardner capacity calculation as given,
and we reference results from Zhong et al. [9] without exposition or proof. For the details of the standard Gardner
capacity calculation, we refer to her original papers [3, 4]. Our notation will be standard, and will in particular hew
closely to that in our own work on the storage capacity problem for nonlinear networks [8]. Throughout, we write
φ(t) = exp(−t2/2)/

√
2π for the standard Gaussian density, and H(z) =

∫∞
z dt φ(t) for the corresponding tail

distribution function.

2 Moment constraints
We first consider the possibility of constraining the first K ≪ N moments of the weight distribution, i.e., we fix

1

N

N∑
j=1

wk
j = mk (k = 1, 2, . . . ,K); (4)

we of course have m2 = 1 from the spherical constraint. This constraint is well-defined at any finite N , but it is of
course possible that it may not be satisfiable. At the end of the computation, we will consider taking K → ∞ after
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taking N → ∞. This approach has the advantage of not requiring any path integrals, which we will encounter in
our subsequent approach.

The constrained Gardner volume is in this case

Z =

∫
dw

 K∏
k=1

δ

 N∑
j=1

wk
j −Nmk

 P∏
µ=1

Θ

(
yµxµ ·w√

N
− κ

)
. (5)

2.1 Evaluating the disorder average

As usual, we will proceed via the replica method. The replicated, averaged Gardner volume is

Ex,yZ
n =

∫ n∏
a=1

dwa

 n∏
a=1

K∏
k=1

δ

 N∑
j=1

(wa
j )

k −Nmk

[Ex,y

n∏
a=1

Θ

(
yx ·wa

√
N

− κ

)]P
. (6)

The data average in the square brackets is identical to that in the standard Gardner capacity calculation. We thus
recall the standard result that, in the thermodynamic limit,

Ex,y

n∏
a=1

Θ

(
yx ·wa

√
N

− κ

)
→ enG1(Q), (7)

for

Qab =
1

N
wa ·wb (8)

the Edwards-Anderson order parameters and

G1(Q) = Eh∼N (0,Q)Ey

n∏
a=1

Θ(yha − κ) (9)

the usual perceptron energetic term. Enforcing the definitions of these order parameters and the moment constraints
via Fourier representations of the Dirac distribution, we have

Ex,yZ
n =

∫ ∏
a,k

dR̂a
k

4πi/N

∫ ∏
b<a

dQab dQ̂ab

2πi/N
exp

(
N
∑
b<a

QabQ̂ab +
N

2

n∑
a=1

K∑
k=1

R̂a
kmk + PnG1(Q)

)

×

[∫ n∏
a=1

dwa exp

(
−
∑
b<a

Q̂abwawb − 1

2

n∑
a=1

K∑
k=1

R̂a
k(w

a)k

)]N
(10)

Here, we exclude the diagonal elements from Q and Q̂, and use R̂a
2 to enforce the spherical constraint. The entropic

term is then

nG2 =
∑
b<a

QabQ̂ab +
1

2

n∑
a=1

K∑
k=1

Ra
kmk

+ log

∫ n∏
a=1

dwa exp

(
−
∑
b<a

Q̂abwawb − 1

2

n∑
a=1

K∑
k=1

R̂a
k(w

a)k

)
. (11)
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2.2 Replica-symmetric saddle point equations

We make a replica-symmetric Ansatz

Qab = q (12)

Q̂ab = −q̂ (13)

R̂a
2 = r̂2 + q̂ (14)

R̂a
k = r̂k (k ̸= 2). (15)

The energetic term is identical to the standard Gardner calculation, and thus has n → 0 limit

GRS
1 = Et logH

(
κ+ t

√
q

√
1− q

)
, (16)

where t ∼ N (0, 1). The entropic term simplifies to

G2 =
1

2
(1− n)qq̂ − 1

2
q̂ +

1

2

K∑
k=1

r̂kmk

+
1

n
log

∫ n∏
a=1

dwa exp

(
−1

2

n∑
a=1

K∑
k=1

r̂k(w
a)k − 1

2
q̂

[∑
a

wa

]2)
(17)

which has n → 0 limit

G2 =
1

2

K∑
k=1

r̂kmk −
1

2
(1− q)q̂ + Et∼N (0,1) log

∫ ∞

−∞
dw exp

(
−1

2

K∑
k=1

r̂kw
k +

√
q̂tw

)
. (18)

We now can derive the saddle point equations. First, as in the standard perceptron calculation, the saddle point
equation for q is

0 = α
∂GRS

1

∂q
+

∂GRS
2

∂q
(19)

= −αEt

[(
t√

q(1− q)
+

κ+ t
√
q

(1− q)3/2

)
φ(z)

H(z)

∣∣∣∣
z=(κ+t

√
q)/

√
1−q

]
+

1

2
q̂, (20)

which yields

q̂ = αEt

[(
t√

q(1− q)
+

κ+ t
√
q

(1− q)3/2

)
φ(z)

H(z)

∣∣∣∣
z=(κ+t

√
q)/

√
1−q

]
. (21)

The saddle point equations for r̂k are

∂G2

∂r̂k
=

1

2
mk −

1

2
Et

∫∞
−∞ dwwk exp

(
−1

2

∑K
k=1 r̂kw

k +
√
q̂tw

)
∫∞
−∞ dw exp

(
−1

2

∑K
k=1 r̂kw

k +
√
q̂tw

) . (22)

Parallelling Zhong et al. [9]’s analysis,

p(w|t) =
exp

(
−1

2

∑K
k=1 r̂kw

k +
√
q̂tw

)
∫∞
−∞ dw exp

(
−1

2

∑K
k=1 r̂kw

k +
√
q̂tw

) (23)
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can be interpreted under appropriate conditions as a conditional density. In the present setup, it has a clear interpre-
tation as a maximum-entropy distribution subject to moment constraints. Then, these saddle point equations are
just the moment conditions

mk =

∫ ∞

−∞
p(w)wk (24)

where

p(w) = Etp(w|t) (25)

is the resulting marginal density.
Using Stein’s lemma and the second-moment condition∫ ∞

−∞
p(w)w2 = m2 = 1, (26)

the saddle point equation for q̂ is

∂G2

∂q̂
=

1

2
(q − 1) +

1

2
√
q̂
Et

t∫∞
−∞ dww exp

(
−1

2

∑K
k=1 r̂kw

k +
√
q̂tw

)
∫∞
−∞ dw exp

(
−1

2

∑K
k=1 r̂kw

k +
√
q̂tw

)
 (27)

=
1

2
(q − 1) +

1

2
√
q̂
Et

 ∂

∂t

∫∞
−∞ dww exp

(
−1

2

∑K
k=1 r̂kw

k +
√
q̂tw

)
∫∞
−∞ dw exp

(
−1

2

∑K
k=1 r̂kw

k +
√
q̂tw

)
 (28)

=
1

2
(q − 1) +

1

2
Et

[∫ ∞

−∞
dw p(w|t)w2

]
− 1

2
Et

[(∫ ∞

−∞
dw p(w|t)w

)2
]

(29)

=
1

2
q − 1

2
Et

[(∫ ∞

−∞
dw p(w|t)w

)2
]

(30)

hence

q = Et

[(∫ ∞

−∞
dw p(w|t)w

)2
]
. (31)

2.3 Extracting the critical capacity

We now consider the limit q ↑ 1. We first consider the equation for q̂ and the energetic term, whose limits follow the
standard perceptron calculation. In this limit, we use the fact that

φ(z)

H(z)
∼

{
0 z → −∞
z z → +∞

, (32)

which yields

q̂ ∼ α

(1− q)2

∫ ∞

−κ
dt φ(t)(κ+ t)2. (33)
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We can then see that the correct scaling of q̂ as q ↑ 1 is

q̂ =
q̃

(1− q)2
(34)

for q̃ of order one. Then,

q̃ = α

∫ ∞

−κ
dt φ(t)(κ+ t)2 (35)

at the q ↑ 1 saddle point. This quantity is positive and of order one. Moreover, we can use the asymptotics of H(z)
to obtain

2(1− q)GRS
1 ∼ −α

∫ ∞

−κ
dt φ(t)(κ+ t)2 (36)

We can then see that the self-consistent scalings for the remaining Lagrange multipliers are

r̂k =
r̃k

1− q
. (37)

With this Ansatz, the entropic term becomes

2(1− q)G2 =
K∑
k=1

r̃kmk − q̃ + 2(1− q)Et∼N (0,1) log

∫ ∞

−∞
dw exp

[
1

1− q

(
−1

2

K∑
k=1

r̃kw
k +

√
q̃tw

)]
.

(38)

In the limit q ↑ 1, we can evaluate the integral over w using Laplace’s method, yielding

2(1− q)G2 =
K∑
k=1

r̃kmk − q̃ + Etmax
w

(
2
√

q̃tw −
K∑
k=1

r̃kw
k

)
. (39)

At the maximum w∗, we have
K∑
k=1

kr̃kw
k−1
∗ = 2

√
q̃t. (40)

The saddle point equation for q̃ is

0 = −1 + Et

[
∂

∂q̃

(
2
√

q̃tw∗ −
K∑
k=1

r̃kw
k
∗

)]
(41)

= −1 +
1√
q̃
Et[tw∗] + Et

[(
2
√
q̃t−

K∑
k=1

kr̃kw
k−1
∗

)
∂w∗
∂q̃

]
(42)

= −1 +
1√
q̃
Et[tw∗], (43)

where the term in the round brackets vanishes by the optimality condition. The saddle point equation for r̃k is

0 = mk + Et

[
∂

∂r̃k

(
2
√

q̃tw∗ −
K∑
l=1

r̃lw
l
∗

)]
(44)

= mk − Et[w
k
∗ ] + Et

[(
2
√

q̃t−
K∑
l=1

lr̃lw
l−1
∗

)
∂w∗
∂r̃k

]
(45)

= mk − Et[w
k
∗ ], (46)
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where the term in the round brackets once again vanishes by the optimality condition.
We are then left with the conditions

Et[w
k
∗ ] = mk (k = 1, . . . ,K) (47)

and

q̃ = Et[tw∗]
2. (48)

This yields

αc = Et[tw∗]
2

[∫ ∞

−κ
dt φ(t)(κ+ t)2

]−1

, (49)

which is precisely analogous to Zhong et al. [9]’s result. At this stage, we must solve the moment constraints to
obtain r̃k, and from that compute Et[tw∗] and then the capacity.

If we now pass to the limit K → ∞ in which we constrain an infinite number of moments, and the moments
satisfy an appropriate Carleman condition to uniquely determine a measure [1], then the constraints Et[w

k
∗ ] = mk

imply the that the induced distribution of w∗ must coincide with the desired distribution. We then recover Zhong
et al. [9]’s result. However, this approach cannot be applied to those distributions that are not uniquely determined
by their moments. Importantly, this class of distributions includes the lognormal [1], on which Zhong et al. [9]
focus.

3 Penalizing the Cramér distance
We will now consider introducing a soft penalty on the distance between the probability distributions—one that
is well-defined even at finite N—and then take the penalty to be of infinite strength after taking N → ∞. For
analytical convenience, we use the squared Cramér distance between the empirical and target distributions:

C(w) =

∫ ∞

−∞
dw [Fw(w)− F (w)]2, (50)

i.e., the square of the L2 distance between their CDFs [2, 7]. This distance measure is well-defined at any finite N .
We then introduce the modified Gardner volume

Z =

∫
dσN (w) exp[−NβC(w)]

P∏
µ=1

Θ

(
yµxµ ·w√

N
− κ

)
, (51)

where σN is the uniform probability measure on the N -sphere of radius
√
N . In the limit β → ∞, this will give

the capacity subject to the desired distribution constraint.
This approach will closely mirror that of Zhong et al. [9]; we will recover precisely the same saddle point

equations.

3.1 Evaluating the disorder average

The replicated, averaged Gardner volume expands as

Ex,yZ
n =

∫ n∏
a=1

dσN (wa) exp

(
−Nβ

n∑
a=1

C(wa)

)[
Ex,y

n∏
a=1

Θ

(
yx ·wa

√
N

− κ

)]P
. (52)
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As above, the data average in the square brackets is identical to that in the standard Gardner capacity calculation.
Then, the definitions of the Edwards-Anderson order parameters via Fourier representations of the Dirac distribution,
we have

Ex,yZ
n =

1

ωn
N−1

∫
dQ dQ̂

(4πi/N)n(n+1)/2
exp

(
N

2
tr(QQ̂) + PnG1(Q)

)

×
∫ n∏

a=1

dwa exp

−1

2

n∑
a,b=1

Q̂abwa ·wb −Nβ
n∑

a=1

C(wa)

 (53)

where the integral over Q̂ is taken over all n× n imaginary symmetric matrices, and that over Q is taken over all
n× n symmetric matrices with diagonal elements equal to one. Here,

ωN−1 =

∫
∥w∥2=

√
N
dw =

2πN/2

Γ(N/2)
N (N−1)/2 (54)

is the normalizing factor in σN .
To proceed further, we must deal with the fact that the constraint term couples different elements of the weight

vectors. Via a functional Hubbard-Stratonovich transformation with auxiliary fields ϕa(x), we may write

exp

(
−Nβ

n∑
a=1

C(wa)

)

=
1

Zn

∫ n∏
a=1

Dϕa exp

(
−N

2β

n∑
a=1

∫ ∞

−∞
dxϕa(x)2 − iN

n∑
a=1

∫ ∞

−∞
dxϕa(x)[Fwa(x)− F (x)]

)
, (55)

where

Z ≡
∫

Dϕ exp

(
−N

2β

∫ ∞

−∞
dxϕ(x)2

)
(56)

is the partition function of the auxiliary Gaussian field. Substituting in the definition of Fwa(x) and evaluating the
resulting integrals against indicator functions, this yields

exp

(
−Nβ

n∑
a=1

C(wa)

)
=

1

Zn

∫ n∏
a=1

Dϕa exp

(
−N

2β

n∑
a=1

∫ ∞

−∞
dxϕa(x)2 + iN

n∑
a=1

∫ ∞

−∞
dxϕa(x)F (x)

)

×
N∏
j=1

exp

(
−i

n∑
a=1

∫ ∞

wa
j

dxϕa(x)

)
. (57)

We can now factorize the weight integrals across dimensions, yielding

∫ n∏
a=1

dwa exp

−1

2

n∑
a,b=1

Q̂abwa ·wb −Nβ

n∑
a=1

C(wa)

 (58)

=
1

Zn

∫ n∏
a=1

Dϕa exp

(
−N

2β

n∑
a=1

∫ ∞

−∞
dxϕa(x)2 + iN

n∑
a=1

∫ ∞

−∞
dxϕa(x)F (x)

)

×

∫ ∏
a

dwa exp

−1

2

n∑
a,b=1

Q̂abwawb − i

n∑
a=1

∫ ∞

wa

dxϕa(x)

N

. (59)
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Thus, defining

nG2(Q, Q̂,ϕ) ≡ 1

2
tr(QQ̂)

− 1

2β

n∑
a=1

∫ ∞

−∞
dxϕa(x)2 + i

n∑
a=1

∫ ∞

−∞
dxϕa(x)F (x)

+ log

∫ n∏
a=1

dwa exp

−1

2

n∑
a,b=1

Q̂abwawb − i
n∑

a=1

∫ ∞

wa

dxϕa(x)

 , (60)

we can write the averaged replicated partition function as

Ex,yZ
n =

1

ωn
N−1Zn(4πi/N)n(n+1)/2

∫
dQ dQ̂

∫
Dϕ exp

(
Nn[αG1(Q) +G2(Q, Q̂,ϕ)]

)
. (61)

This form is suitable for saddle point evaluation.

3.2 Replica-symmetric saddle point equations

We now make a replica-symmetric Ansatz

Qab = (1− q)δab + q (62)

Q̂ab = ẑδab − q̂ (63)
ϕa(x) = iϕ(x), (64)

where our variable definitions are made such that q̂ will turn out to be real and positive and ϕ(x) will be real at the
saddle point.

The energetic term G1 is the same as in the standard Gardner calculation, while the entropic term simplifies to

GRS
2 =

1

2
(ẑ − q̂)− 1

2
(n− 1)qq̂

+
1

2β

∫ ∞

−∞
dxϕ(x)2 −

∫ ∞

−∞
dxϕ(x)F (x)

+
1

n
log

∫ n∏
a=1

dwa exp

−1

2

n∑
a=1

ẑ(wa)2 +
1

2
q̂

(
n∑

a=1

wa

)2

+
n∑

a=1

∫ ∞

wa

dxϕ(x)

 (65)

which, following standard manipulations from the usual Gardner calculation can be written in the limit n → 0
after a Hubbard-Stratonovich transformation as

GRS
2 =

1

2
ẑ − 1

2
(1− q)q̂

+
1

2β

∫ ∞

−∞
dxϕ(x)2 −

∫ ∞

−∞
dxϕ(x)F (x)

+ Et∼N (0,1) log

∫ ∞

−∞
dw exp

(
−1

2
ẑw2 +

√
q̂tw +

∫ ∞

w
dxϕ(x)

)
. (66)

The saddle point equation for q is as in the standard perceptron calculation, yielding

q̂ = αEt

[(
t√

q(1− q)
+

κ+ t
√
q

(1− q)3/2

)
φ(z)

H(z)

∣∣∣∣
z=(κ+t

√
q)/

√
1−q

]
. (67)
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The saddle point equation for ϕ(x) is

0 =
δGRS

2

δϕ(x)
(68)

=
1

β
ϕ(x)− F (x) + Et

[∫∞
−∞ dw exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w duϕ(u)]Θ(x− w)∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w duϕ(u)]

]
. (69)

which yields

F (x) =
1

β
ϕ(x) + Et

[∫ x
−∞ dw exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w duϕ(u)]∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w duϕ(u)]

]
. (70)

As noted by Zhong et al. [9],

p(w|t) ≡
exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w dxϕ(x)]∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w dxϕ(x)]

(71)

has the interpretation of a probability density overw conditioned on t for any fixed ẑ, q̂, andϕ(x). This interpretation
holds provided that ẑ and ϕ(x) are real and that q̂ is positive. Then, letting

p(w) ≡ Etp(w|t) (72)

be the resulting marginal distribution,

Et

∫ x

−∞
dw p(w|t) =

∫ x

−∞
dwEtp(w|t) =

∫ x

−∞
dw p(w) ≡ P (x) (73)

has the interpretation of a CDF. We can then see that the sensible scaling for ϕ(x) as β → ∞ is for it to remain
order one (such that ϕ(x)/β → 0), which yields a limiting condition that can be interpreted as a pointwise equality
of CDFs:

F (x) = P (x). (74)

The saddle point equation for ẑ is

0 =
∂GRS

2

∂ẑ
(75)

=
1

2
− 1

2
Et

[∫∞
−∞ dw exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w dxϕ(x)]w2∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w dxϕ(x)]

]
, (76)

which gives the second-moment constraint ∫ ∞

−∞
dw p(w)w2 = 1. (77)

The saddle point equation for q̂ is

0 =
∂GRS

2

∂q̂
(78)

=
1

2
(q − 1) +

1

2

1√
q̂
Et

[
t

∫∞
−∞ dww exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w dxϕ(x)]∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w dxϕ(x)]

]
(79)
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By Stein’s lemma,

Et

[
t

∫∞
−∞ dww exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w dxϕ(x)]∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w dxϕ(x)]

]
(80)

= Et

[
∂

∂t

∫∞
−∞ dww exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w dxϕ(x)]∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w dxϕ(x)]

]
(81)

=
√

q̂Et

[∫∞
−∞ dww2 exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w dxϕ(x)]∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w dxϕ(x)]

]

−
√

q̂Et

(∫∞
−∞ dww exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w dxϕ(x)]∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w dxϕ(x)]

)2
 (82)

=
√

q̂

∫ ∞

−∞
dw p(w)w2 −√

qEt

[(∫ ∞

−∞
dw p(w|t)w

)2
]

(83)

Thus, using the fact that

Et

[∫ ∞

−∞
dw pt(w)w

2

]
= 1 (84)

at the saddle point, we have the condition

q = Et

[(∫ ∞

−∞
dw p(w|t)w

)2
]

(85)

= Et

[
E[w|t]2

]
. (86)

Combining these results, we have the conditions

F (x) = Et

[∫ x

−∞
dw p(w|t)

]
(87)

1 = Et

[∫ ∞

−∞
dw p(w|t)w2

]
(88)

q = Et

[(∫ ∞

−∞
dw p(w|t)w

)2
]

(89)

q̂ = −αEt

[(
t√

q(1− q)
+

κ+ t
√
q

(1− q)3/2

)
φ(z)

H(z)

∣∣∣∣
z=(κ+t

√
q)/

√
1−q

]
(90)

with the definition

p(w|t) ≡
exp[−1

2 ẑw
2 +

√
q̂tw +

∫∞
w dxϕ(x)]∫∞

−∞ dw exp[−1
2 ẑw

2 +
√
q̂tw +

∫∞
w dxϕ(x)]

. (91)

We must solve these equations for q, q̂, ẑ, and ϕ(x).
Except for the fact that the distribution constraint is expressed in terms of CDFs, these saddle point equations are

identical to those found by Zhong et al. [9] after a field redefinition, which we will further discuss below. Of course,
if F (x) is sufficiently regular, we may recover the condition on PDFs used by Zhong et al. [9] by differentiating:

f(x) = p(x). (92)

11



This requires that F (x) is absolutely continuous with respect to Lebesgue measure. More broadly, it seems possible
that this construction using a functional Hubbard-Stratonovich transformation, which in the β → ∞ limit should
correspond to simply introducing a Lagrange multipler field that constrains the CDFs to coincide pointwise, requires
F (x) to be absolutely continuous with respect to Lebesgue measure. We will leave a detailed examination of this
issue to furture work.

We now remark that Zhong et al. [9] make a clever choice of fields that simplifies their study of the q ↑ 1 limit.
Let us assume that F (x) has a well-behaved density f(x), and recall that its second moment must be unity for
consistency with the spherical constraint, i.e., that∫ ∞

−∞
dx f(x)x2 = 1. (93)

Then, integrating by parts under the assumption that
∫∞
w dxϕ(x) vanishes as w → ∞, we may write

1

2
ẑ −

∫ ∞

−∞
dw ϕ(w)F (w) =

∫ ∞

−∞
dw f(w)

(
1

2
ẑw2 +

∫ ∞

w
dxϕ(x)

)
. (94)

In the zero-temperature limit β → ∞, we may then write the entropic term as

GRS
2 = −1

2
(1− q)q̂ +

∫ ∞

−∞
dw f(w)λ(w) + Et∼N (0,1) log

∫ ∞

−∞
dw exp

(√
q̂tw − λ(w)

)
(95)

where we have defined the new field

λ(w) ≡ 1

2
ẑw2 +

∫ ∞

w
dxϕ(x), (96)

which packages together all dependence on ẑ and ϕ. The saddle point equation for λ(x) is

0 =
δGRS

2

δλ(x)
= f(x)− Et

[
exp

(√
q̂tx− λ(x)

)∫∞
−∞ dw exp

(√
q̂tw − λ(w)

)] , (97)

which yields the density constraint

f(x) = Et

[
exp

(√
q̂tx− λ(x)

)∫∞
−∞ dw exp

(√
q̂tw − λ(w)

)] . (98)

3.3 Extracting the critical capacity

We now consider the limit q ↑ 1. As in the standard perceptron calculation and our analysis using moment
constraints, we have

q̂ =
q̃

(1− q)2
(99)

for

q̃ = α

∫ ∞

−κ
dt φ(t)(κ+ t)2 (100)

at the q ↑ 1 saddle point. We also have the asymptotic

2(1− q)GRS
1 ∼ −α

∫ ∞

−κ
dt φ(t)(κ+ t)2. (101)

12



We now consider the entropic term with Zhong et al. [9]’s field choices. Examining the zero-temperature
entropic term GRS

2 , we can see that the self-consistent scaling of λ(x) is

λ(x) =
λ̃(x)

1− q
(102)

for λ̃(x) real and of order one. The entropic term then becomes

2(1− q)GRS
2 ∼ −q̃ + 2

∫ ∞

−∞
dw f(w)λ̃(w)

+ 2(1− q)Et log

∫ ∞

−∞
dw exp

[
1

1− q

(√
q̃tw − λ̃(w)

)]
. (103)

In the limit q ↑ 1, assuming that λ̃(x) is sufficiently well-behaved, the integral over w can be evaluated by the
method of steepest descent. This yields

2(1− q)Et log

∫ ∞

−∞
dw exp

[
1

1− q
exp

(√
q̂tw − λ̃(w)

)]
∼ 2Et

[√
q̂tw∗ − λ̃(w∗)

]
, (104)

where w∗ is determined by the condition that it maximizes
√
q̃tw − λ̃(w), which gives the first-order condition

λ̃′(w∗) =
√
q̃t. (105)

We can now easily obtain the saddle point equation for q̃, which is

0 = −1 +
1√
q̃
Et[tw∗] + 2Et

[(√
q̃t− λ̃′(w∗)

) ∂w∗
∂q̂

]
(106)

= −1 +
1√
q̃
Et[tw∗], (107)

where the term in the round brackets vanishes by the first-order optimality condition for w∗. This yields

q̃ = Et[tw∗]
2. (108)

Similarly,

0 = 2f(w)− 2Etδ(w∗ − w) (109)
= 2f(w)− 2φ(t∗(w))

∣∣t′∗(w)∣∣ , (110)

where t∗(w) is determined by inverting the relation w∗(t). Integrating this result to obtain a condition on CDFs,
we have

F (w) =

∫ w

−∞
dxφ(t∗(x))

∣∣t′∗(x)∣∣ = Φ(t). (111)

This recovers Zhong et al. [9]’s result.

4 Comparison to the capacity calculation for a perceptron with a nonuniform
weight prior

It is instructive to compare the above computation with a penalty on the Cramér distance to that for a perceptron
with some fixed prior density ρ(w) over the elements of the weight vector, in addition to the spherical constraint. In
this case, the modified Gardner volume is

Z =

∫
dσN (w)

 N∏
j=1

ρ(wj)

 P∏
µ=1

Θ

(
yµxµ ·w√

N
− κ

)
. (112)
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4.1 Evaluating the disorder average

We again proceed by using the fact that the training examples are independent and identically distributed, which
yields

Ex,yZ
n =

∫ n∏
a=1

dσN (wa)

 n∏
a=1

N∏
j=1

ρ(wa
j )

[Ex,y

n∏
a=1

Θ

(
yx ·wa

√
N

− κ

)]P
. (113)

As before, the data average in the square brackets is identical to that in the standard Gardner capacity calculation.
Then, enforcing the definitions of the Edwards-Anderson order parameters via Fourier representations of the Dirac
distribution, we have

Ex,yZ
n =

1

ωn
N−1

∫
dQ dQ̂

(4πi/N)n(n+1)/2
exp

(
N

2
tr(QQ̂) + PnG1(Q)

)

×

∫ n∏
a=1

dwaρ(wa) exp

−1

2

n∑
a,b=1

Q̂abwawb

N

, (114)

where the integral over Q̂ is taken over all n× n imaginary symmetric matrices, and that over Q is taken over all
n× n symmetric matrices with diagonal elements equal to one. The entropic term is then

nG2(Q, Q̂) ≡ 1

2
tr(QQ̂) + log

∫ n∏
a=1

dwaρ(wa) exp

−1

2

n∑
a,b=1

Q̂abwawb

 , (115)

and we can write the averaged replicated partition function as

Ex,yZ
n =

1

ωn
N−1(4πi/N)n(n+1)/2

∫
dQ dQ̂ exp

(
Nn[αG1(Q) +G2(Q, Q̂)]

)
. (116)

4.2 Replica-symmetric saddle point equations

We again make a replica-symmetric Ansatz

Qab = (1− q)δab + q (117)

Q̂ab = ẑδab − q̂ (118)

where our variable definitions are made such that q̂ will turn out to be real and positive at the saddle point. Again,
the energetic term is identical to the standard Gardner calculation. Following standard manipulations from the
usual Gardner calculation, the energetic term can be written in the limit n → 0 after a Hubbard-Stratonovich
transformation as

GRS
2 =

1

2
ẑ − 1

2
(1− q)q̂ + Et log

∫ ∞

−∞
dw ρ(w) exp

(
−1

2
ẑw2 +

√
q̂tw

)
. (119)

The weight integral is identical to the previous setting with the replacement of the dynamical field-dependent term
exp

(∫∞
w dxϕ(x)

)
with the fixed density ρ(w). Therefore, if we define the function

p(w|t) ≡
ρ(w) exp[−1

2 ẑw
2 +

√
q̂tw]∫∞

−∞ dw ρ(w) exp[−1
2 ẑw

2 +
√
q̂tw]

, (120)
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which again has the interpretation of a conditional probability density under appropriate constraints on ρ, ẑ, and q̂,
we will obtain the nearly-identical saddle point equations

1 = Et

[∫ ∞

−∞
dw p(w|t)w2

]
(121)

q = Et

[(∫ ∞

−∞
dw p(w|t)w

)2
]

(122)

q̂ = −αEt

[(
t√

q(1− q)
+

κ+ t
√
q

(1− q)3/2

)
φ(z)

H(z)

∣∣∣∣
z=(κ+t

√
q)/

√
1−q

]
(123)

which we now must solve for q, q̂, and ẑ.

4.3 Extracting the critical capacity

We now consider the limit q ↑ 1. We first consider the equation for q̂ and the energetic term, whose limits follow the
standard perceptron calculation. As before, the self-consistent scaling of q̂ as q ↑ 1 is

q̂ =
q̃

(1− q)2
(124)

for q̃ of order one. Then,

q̃ = α

∫ ∞

−κ
dt φ(t)(κ+ t)2 (125)

at the q ↑ 1 saddle point. This quantity is positive and of order one.
Examining the entropic term, we can see that the self-consistent scaling is to have

ẑ =
z̃

1− q
(126)

for z̃ real and of order one. The entropic term then becomes

2(1− q)GRS
2 ∼ z̃ − q̃ + 2(1− q)Et log

∫ ∞

−∞
dw ρ(w) exp

[
1

1− q

(
−1

2
z̃w2 +

√
q̃tw

)]
. (127)

If ρ(w) is smooth and of non-compact support, we can easily evaluate the integrals over w using the method of
steepest descent,

w =

√
q̃

z̃
t. (128)

and

2(1− q)GRS
2 ∼ z̃ − q̃ + 2Et

[
−1

2
z̃w2 +

√
q̃tw

]
w=

√
q̃t/z̃

(129)

∼ z̃ − q̃ +
q̃

z̃
, (130)

where the contribution of 2(1− q)Et log ρ(
√
q̃t/z̃) can be neglected. The saddle point equation for q̃ then yields

z̃ = 1, (131)
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and that for z̃ then yields

q̃ = 1. (132)

Then, we find that the critical capacity is

1

α
=

∫ ∞

−κ
dt φ(t)(κ+ t)2. (133)

which recovers the classic Gardner result.
However, if ρ(w) is not sufficiently smooth or is of compact support, then this saddle point evaluation is no

longer valid, and the capacity is modified. For example, consider the case in which the weights are sign-constrained:

2(1− q)GRS
2 ∼ z̃ − q̃ + 2(1− q)Et log

∫ ∞

0
dw exp

[
1

1− q

(
−1

2
z̃w2 +

√
q̃tw

)]
. (134)

If t > 0, then the integral is dominated by w =
√
q̃t/z̃. If t < 0, then it is dominated by t = 0. This leads to

2(1− q)GRS
2 ∼ z̃ − q̃ + 2

∫ ∞

0
dt φ(t)

(
−1

2
z̃w2 +

√
q̃tw

)
w=

√
q̃t/z̃

(135)

∼ z̃ − q̃ +
1

2

q̃

z̃
. (136)

This yields

z̃ = q̃ =
1

2
(137)

hence we have
1

α
= 2

∫ ∞

−κ
dt φ(t)(κ+ t)2 (138)

meaning that the sign constraint reduces the capacity by a factor of 2.
As another possibility, consider the case in which the prior constrains a fraction f of the weights to be non-

negative on average. We write this in the form

ρ(w) = f1w≥0 + (1− f). (139)

Combining the arguments above, we find in this case that

2(1− q)GRS
2 ∼ z̃ − q̃ +

(
1− f

2

)
q̃

z̃
(140)

which leads to

z̃ = q̃ = 1− f

2
. (141)

This gives

α =

(
1− f

2

)[∫ ∞

−κ
dt φ(t)(κ+ t)2

]−1

(142)

which results in a zero-margin critical capacity of

α(κ = 0) = 2− f. (143)

This recovers the result of Kanter and Eisenstein [5].
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