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Abstract
These are notes for lectures given as part of Harvard Applied Math 226 on 30 September and 2

October 2024. They are not intended to be entirely complete or entirely rigorous.
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1 Introduction to ridge regression
In these lecture notes, we will consider the generalization error of ridge regression in high dimensions.
First, some introductory comments are in order. Namely, what is ridge regression, and why should we
care about it?

1.1 Interpolation
We will present three perspectives on why one should care about ridge regression. The first perspective
is that of simple linear interpolation. Suppose one has a system of p equations in d variables, written in
matrix form as

Xw = y (1)

where X ∈ Rp×d is the design matrix, y ∈ Rp is the target, and w ∈ Rd is the vector of trainable
parameters. For simplicity, assume that X is full rank.

Ridge regression unifies the standard solutions to this problem as limiting cases of the same estimator.
Let

R̂(w) =
1

p
∥Xw − y∥2 (2)

be the mean-squared error of a candidate solution to this linear system, and consider the ridge estimator

w = argmin
w

R̂(w) + λ∥w∥2. (3)

One can easily see that

w =
1

p

(
1

p
X⊤X+ λI

)−1

X⊤y. (4)

In the overdetermined regime p > d, X⊤X is invertible, and we can directly take the λ ↓ 0 limit to
obtain the ordinary least-squares solution

w = (X⊤X)−1X⊤y. (5)

In the underdetermined regime p < d we can apply the push-through identity to write

w =
1

p
X⊤

(
1

p
XX⊤ + λI

)−1

y, (6)

whence as XX⊤ is invertible in this regime we can pass to the limit λ ↓ 0 to obtain the minimum-norm
solution

w = X⊤(XX⊤)−1y. (7)
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1.2 Dynamics
Consider the gradient flow

d

dt
w = −∇wR̂(w) = −1

p
X⊤Xw +

1

p
X⊤y (8)

as would result from doing gradient descent on the least-squares cost introduced above. If one starts from
w = 0—as is true in the NTK setting—then it is not hard to show that the fixed point of these dynamics
will be the minimum-norm interpolant. This holds also in discrete time [1].

1.3 Bayesian inference
A final perspective comes from Bayesian inference. Suppose that we assume a likelihood

y |X,w = N (Xw, σ2I) (9)

and a prior

w ∼ N (0, σ2
0I). (10)

Then, one can show with a bit of algebra that the posterior mean—and thus the minimum mean-squared
error (MMSE) estimator is the ridge estimator with parameter

λ =
σ2

σ2
0

. (11)
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2 Generalization
We now turn to the question of generalization, i.e., the error of prediction for unseen inputs.

2.1 Assumptions on data
To make sense of this question, we must either make some assumption on the data forming our regressor’s
world, or commit to the pessimism of worst-case analysis (that is, to see what the maximum possible error
would be for an adversarially-chosen input).

As a simple but non-trivial model, we will assume that the world is Gaussian (we will later return to
the question of how strong this assumption actually is in high dimensions). That is, we assume covariates
are drawn as

x ∼ N (0,Σ) (12)

for a positive-definite symmetric covariance matrixΣwith bounded spectral norm. From these covariates
we want to predict targets given by a fixed linear projection of x plus independent noise:

y |x ∼ N (⟨w∗,x⟩, η2) (13)

where w∗ ∈ Rd is a fixed vector. In other words, we can write

y
d
= ⟨w∗,x⟩+ ϵ (14)

where the noise ϵ ∼ N (0, η2) is independent of x.
We assume that we have access to a training dataset of p i.i.d. samples from this distribution. Using

this dataset, we compute the ridge estimate

w =
1

p
(Σ̂+ λI)−1X⊤y (15)

where we collect the covariates into the design matrix X ∈ Rp×d and the vector y ∈ Rp, and define the
empirical covariance matrix

Σ̂ =
1

p
X⊤X. (16)

Collecting the noise samples into a vector ϵ ∈ Rp, we can expand the estimate into a “signal” term
depending on w∗ and a “noise” term depending on ϵ:

w = (Σ̂+ λI)−1Σ̂w∗ +
1

p
(Σ̂+ λI)−1X⊤ϵ. (17)

It is useful to re-write this in terms of the difference between the true signal and the estimate:

w∗ −w = λ(Σ̂+ λI)−1w∗ −
1

p
(Σ̂+ λI)−1X⊤ϵ (18)
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We can now define the generalization error: draw a test point x ∼ N (0,Σ), and predict the corre-
sponding target y using ⟨w,x⟩. We measure the error of this prediction using the mean-squared error
averaged over the choice of test point and the training noise, i.e., we define

R(w) = EϵE(x,y)(⟨w,x⟩ − y)2 = Eϵ(w∗ −w)⊤Σ(w∗ −w) + η2. (19)

Substituting in the expression for w and evaluating the ϵ average, one finds that

R = λ2w⊤
∗ (Σ̂+ λI)−1Σ(Σ̂+ λI)−1w∗ +

η2

p
tr[(Σ̂+ λI)−2Σ̂Σ] + η2 (20)

You will show this on the homework.
We can further simplify this by noting that

(Σ̂+ λI)−1Σ(Σ̂+ λI)−1 = − ∂

∂J
(Σ̂+ JΣ+ λI)−1

∣∣∣∣
J=0

(21)

and

(Σ̂+ λI)−2Σ̂ = − ∂

∂λ
(Σ̂+ λI)−1Σ̂ (22)

=
∂

∂λ
[λ(Σ̂+ λI)−1] (23)

which allows us to write R in terms of the resolvent (Σ̂+λI)−1 and its shifted counterpart (Σ̂+ JΣ+
λI)−1.

2.2 The form of the ridge estimator and the classical statistics limit
At this point a few comments are in order. First, the matrix

(Σ̂+ λI)−1Σ̂ (24)

can be interpreted as a sort of low-pass filter: directions corresponding to eigenvalues of Σ̂ much larger
than λ are unchanged, while those corresponding to small eigenvalues are discarded.

Second, consider the classical statistics limit of p → ∞ for fixed d. There, Σ̂ → Σ by the strong law
of large numbers, so

lim
p→∞

R = λ2w⊤
∗ (Σ+ λI)−2Σw∗ + η2. (25)

Further taking the ridgeless limit gives

lim
λ↓0

lim
p→∞

R = η2, (26)

reflecting the fact that in this limit ridge regression recovers the true signal w∗.
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3 High-dimensional asymptotics
In the previous section, we derived a formula for the generalization error where all randomness is packaged
in terms of the resolvent of the empirical covariance matrix, (Σ̂+λI)−1, or slight modifications thereof.
We know these resolvents behave simply in the limit p → ∞ with d fixed. Our task is now to study them
in the richer high-dimensional limit

d, p → ∞ with d/p → q ∈ (0,∞). (27)

There are many ways to derive the limiting behavior of the resolvents (and thus the generalization error),
which we reviewed in [2]. Here, we leverage an important set of results from random matrix theory
known as strong deterministic equivalence. We will use these results without proof, with the goal of
highlighting their existence and utility.

3.1 An overview of deterministic equivalence
The key players in this story are the matrix-valued resolvent of the sample covariance:

Ĝ(λ) = (Σ̂+ λI)−1 (28)

and its tracial counterpart

ĝ(λ) =
1

d
tr[Ĝ(λ)], (29)

along with the corresponding quantities for the population covariance,

G(λ) = (Σ+ λI)−1 (30)

and

g(λ) =
1

d
tr[G(λ)]. (31)

To define the high-dimensional limit, we assume that we have a sequence of population covariance ma-
trices Σ, indexed by the dimension d, such that limd→∞ g(λ) is well-defined. We will not be too precise
here.

A (perhaps the) foundational result of modern random matrix theory is the Marchenko–Pastur
theorem, which can be stated as a weak deterministic equivalent for ĝ(λ): In the high-dimensional limit,
one has

lim
d,p→∞
d/p→q

ĝ(λ) = lim
d→∞

g(κ) (32)

almost surely, where κ is the unique positive solution to

κ =
λ

1− q 1
d
tr[(Σ+ κI)−1Σ]

=
λ

1− q[1− κg(κ)]
. (33)
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That is, in the high-dimensional limit the traced empirical resolvent at a given ridge λ is equivalent to the
traced population resolvent at a sample-size-dependent renormalized ridge κ. From this deterministic
equivalent for the resolvent one can infer the limiting distribution of eigenvalues of Σ̂; see [2] for details.

Strong deterministic equivalence is a wide-ranging extension of this idea to the matrix-valued resol-
vent. Essentially, it says that the same equivalence holds for the matrix-valued resolvent so long as one
promises to query the matrix in certain ways. We adopt a somewhat weak but useful definition of strong
deterministic equivalence following Bach [3]: For two sequences of (possibly random) matrices A and B
indexed by their dimension d, we say that

A ∼ B (34)

if

lim
d→∞

tr(AM)

tr(BM)
= 1 (35)

for all sequences M of test matrices with bounded spectral norm, where the limit is in probability.
With this definition, one has

Ĝ(λ) ∼ κ

λ
G(κ), (36)

where κ is given as above. As in the weak deterministic equivalent, this has a natural interpretation as the
random fluctuations in the empirical covariance renormalizing the ridge [2].

3.2 The asymptotic generalization error
With these deterministic equivalents in hand, we show in the sequel that

R ∼ κ2

1− γ
w⊤

∗ (Σ+ κI)−2Σw∗ + η2
γ

1− γ
+ η2 (37)

where, as before, κ is the unique positive solution to

κ =
λ

1− q 1
d
tr[(Σ+ κI)−1Σ]

(38)

and

γ = 1− 1

∂κ/∂λ
= q

1

d
tr[(Σ+ κI)−2Σ2]. (39)

This derivation roughly follows Atanasov et al. [2], though our approach to the signal term here is slightly
different.

3.3 Deterministic equivalent for the signal term
Here, we describe how to derive a deterministic equivalent for the signal term using a shifted resolvent.
Our goal is to show that

λ2(Σ̂+ λI)−1Σ(Σ̂+ λI)−1 ∼ κ2

1− γ
(Σ+ κI)−2Σ. (40)
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One approach, as in Atanasov et al. [2], is to study the shifted resolvent (Σ̂ + JΣ + λI)−1 directly.
Another approach1 is to observe that we can also write it in terms of the resolvent of a sample covariance
matrix with re-shaped population covariance:

(Σ̂+ λI)−1Σ(Σ̂+ λI)−1 = −1

λ

∂

∂J
(Σ̂+ λJΣ+ λI)−1

∣∣∣∣
J=0

(41)

= −1

λ

∂

∂J
(I+ JΣ)−1/2(Σ̂J + λI)−1(I+ JΣ)−1/2

∣∣∣∣
J=0

, (42)

where the matrix

Σ̂J = (I+ JΣ)−1/2Σ̂(I+ JΣ)−1/2 (43)

is the sample covariance for data with a modified population covariance

ΣJ = (I+ JΣ)−1/2Σ(I+ JΣ)−1/2. (44)

From this, we can use the result for Wishart matrices stated above to obtain

(Σ̂J + λI)−1 ∼ κJ

λ
(ΣJ + κJI)

−1 (45)

where κJ is the unique positive solution to

κJ =
λ

1− q 1
d
tr[(ΣJ + κJI)−1ΣJ ]

. (46)

Expanding out the form of ΣJ , we find that

(I+ JΣ)−1/2(Σ̂J + λI)−1(I+ JΣ)−1/2 ∼ κJ

λ
(Σ+ κJJΣ+ κJI)

−1 (47)

where the self-consistent equation becomes

κJ =
λ

1− q 1
d
tr[(Σ+ κJJΣ+ κJI)−1Σ]

. (48)

We now must evaluate the derivatives. First, we observe that κJ=0 = κ for κ without the subscript
defined as before. Next, we compute

− ∂

∂J
κJ(Σ+ κJJΣ+ κJI)

−1

∣∣∣∣
J=0

= κ2(Σ+ κI)−2Σ− ∂κJ

∂J

∣∣∣∣
J=0

(Σ+ κI)−2Σ. (49)

Finally, implicitly differentiating the self-consistent equation and using the definition of κ, we have

∂κJ

∂J

∣∣∣∣
J=0

= −κ2

λ

[
κγ + q

1

d
tr[(Σ+ κI)−2Σ]

∂κJ

∂J

∣∣∣∣
J=0

]
(50)

1This approach is suggested but not worked out in Cengiz Pehlevan’s notes for the 2024 Analytical Connectionism Sum-
mer School.
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where we let

γ = q
1

d
tr[(Σ+ κI)−2Σ2] (51)

as elsewhere. Solving for the derivative, this gives

∂κJ

∂J

∣∣∣∣
J=0

= −
[
1 +

κ2

λ
q
1

d
tr[(Σ+ κI)−2Σ]

]−1
κ2

λ
κγ (52)

= −
[
1 +

κ

λ

(
1− λ

κ

)
− κ

λ
γ

]−1
κ

λ
κ2γ (53)

= − κ2γ

1− γ
, (54)

using the identity

(Σ+ κI)−1 =
1

κ

[
I− (Σ+ κI)−1Σ

]
(55)

and the fact that

1− λ

κ
= q

1

d
tr[(Σ+ κI)−1Σ]. (56)

Substituting this in, we have that

− ∂

∂J
κJ(Σ+ κJJΣ+ κJI)

−1

∣∣∣∣
J=0

=
κ2

1− γ
(Σ+ κI)−2Σ. (57)

Recalling our initial objective and collecting results, we have shown that

λ2(Σ̂+ λI)−1Σ(Σ̂+ λI)−1 ∼ κ2

1− γ
(Σ+ κI)−2Σ. (58)

This gives the desired deterministic equivalent for the signal term.

3.4 Deterministic equivalent for the noise term
We now turn to the (simpler) noise term. The desired result is that

1

p
tr[(Σ̂+ λI)−2Σ̂Σ] ∼ γ

1− γ
(59)

for κ and γ as defined before. Our starting point is the fact that, as noted before,

(Σ̂+ λI)−2Σ̂ = − ∂

∂λ
(Σ̂+ λI)−1Σ̂ (60)

=
∂

∂λ
[λ(Σ̂+ λI)−1]. (61)
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We can now immediately use the fact that

(Σ̂+ λI)−1 ∼ κ

λ
(Σ+ κI)−1 (62)

to obtain

∂

∂λ
[λ(Σ̂+ λI)−1] ∼ ∂

∂λ
[κ(Σ+ κI)−1] (63)

=
∂κ

∂λ
(Σ+ κI)−2Σ (64)

from which we find that

1

p
tr[(Σ̂+ λI)−2Σ̂Σ] ∼ q

1

d
tr[(Σ+ κI)−2Σ2]

∂κ

∂λ
(65)

= γ
∂κ

∂λ
(66)

using the definition of γ. What remains is to show the relationship between ∂κ/∂λ and γ. Implicitly
differentiating the self-consistent equation and using the definition of κ, we have

∂κ

∂λ
=

1

1− q 1
d
tr[(Σ+ κI)−1Σ]

− λ

{1− q 1
d
tr[(Σ+ κI)−1Σ]}2

q
1

d
tr[(Σ+ κI)−2Σ]

∂κ

∂λ
(67)

=
κ

λ
− κ

λ

[
1− λ

κ
− γ

]
∂κ

∂λ
. (68)

Solving for ∂κ/∂λ and simplifying, we find that

∂κ

∂λ
=

1

1− γ
. (69)

Therefore, we at last obtain the desired result:

1

p
tr[(Σ̂+ λI)−2Σ̂Σ] ∼ γ

∂κ

∂λ
(70)

=
γ

1− γ
. (71)
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4 Gaussian universality
Now that we have this result, let’s step back and think a bit about what we have accomplished. Under the
assumption that our data was Gaussian, we figured out how to derive a deterministic asymptotic for the
generalization error that captures the effect of randomness in the training data in the high-dimensional
limit.

Before trying to extract some phenomenology from this result, it’s important to ask whether these
insights will actually apply to any interesting, realistic settings. The first objection one might have is that
we have assumed that the covariates are Gaussian. Fortunately that is not an issue in the ridge regression
context thanks to the phenomenon of Gaussian universality: one can show that so long as the data distri-
bution is reasonably well-behaved the asymptotic generalization error will be equal to that for Gaussian
data with matched mean and covariance. This includes, for instance, kernel regression settings like the
NTK where the covariates live in strictly infinite dimension, as seen empirically by Canatar et al. [4]. Rig-
orous study of these universality results is an ongoing area of research, see for instance Misiakiewicz and
Saeed [5] for some recent developments.

5 Phenomenology
With these results in hand—and some faith in their generality—let us try to extract qualitative insights.

5.1 Implicit regularization
First, we consider the significance of the fact that the ridge λ is renormalized to κ. Recall that κ is the
unique positive solution to

κ =
λ

1− q 1
d
tr[(Σ+ κI)−1Σ]

(72)

as d → ∞. It is useful to re-write this in terms of the limiting distribution of the eigenvalues σ of Σ, i.e.,
using the fact that

lim
d→∞

1

d
tr[(Σ+ κI)−1Σ] = Eσ

[
σ

σ + κ

]
, (73)

we have

κ =
λ

1− qEσ

[
σ

σ+κ

] . (74)

Below we prove the following facts about κ:

1. We have κ ≥ λ, and limq↓0 κ = λ.

2. Increasing overparameterization increases κ, i.e.,

∂κ

∂q
> 0. (75)

Indeed, as q → ∞ we have κ → ∞, corresponding to the fact that in this limit ridge regression
gives the zero predictor with risk R ∼ w⊤

∗ Σw∗.
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3. In the ridgeless limit, the behavior of κ depends on the overparameterization ratio q. In the under-
parameterized regime q < 1, κ ↓ 0 as λ ↓ 0, while in the overparmeterized regime q > 1, κ tends
to the unique positive solution of the equation

1 = qEσ

[
σ

σ + κ

]
. (76)

Therefore, the renormalized ridge can remain strictly positive even as the explicit ridge tends to
zero.

4. Structure in the eigenvalue distribution decreases the renormalized ridge. In particular, let κ̄ be the
unique positive solution to

κ̄ =
λ

1− qσ̄/(σ̄ + κ̄)
, (77)

with σ̄ = Eσ[σ], which is the self-consistent equation for an isotropic covariance matrix with
matching mean eigenvalue. Then, one can show that

κ ≤ κ̄. (78)

As the equation for κ̄ is quadratic, it can be solved explicitly, giving

κ̄ =
λ+ (q − 1)σ̄ +

√
[λ+ (q − 1)σ̄]2 + 4σ̄λ

2
. (79)

We can easily work out that

lim
λ↓0

κ̄ =

{
0 q < 1

(q − 1)σ̄ q > 1,
(80)

which agrees with the solution to the limiting equation derived above in this case.

We now prove these claims. For simplicity, we will assume that the support of the eigenvalue distri-
bution is strictly bounded away from zero. That is, we assume that there are constants 0 < c ≤ C such
that c ≤ σ ≤ C . Moreover, we assume that q ̸= 1.

It is first useful to record properties of the function

f(σ, κ) =
σ

σ + κ
, (81)

viewed as a map from [c, C]× [0,∞) → [0, 1]. First, we obviously have

0 ≤ f(σ, κ) ≤ 1, (82)

with f(σ, κ = 1) = 1 for all σ. Next, we have

∂f

∂κ
= − σ

(σ + κ)2
< 0 (83)
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for all σ, κ, while

∂f

∂σ
=

κ

(σ + κ)2
≥ 0 (84)

with equality iff κ = 0. Finally, we have

∂2f

∂κ2
=

2σ

(σ + κ)3
> 0, (85)

while

∂2f

∂σ2
= − 2κ

(σ + κ)3
≤ 0 (86)

with equality iff κ = 0. In words, for any fixed σ, f(σ, κ) is a strictly decreasing, strictly convex function
of κ, while for any fixed κ, f is a increasing concave function of σ, with both inequalities being strict if
κ > 0. If κ = 0, then f(σ, κ = 0) = 1 for all σ. Moreover, all of these derivatives are bounded in
magnitude.

Define

m(κ) = Eσ

[
σ

σ + κ

]
. (87)

In light of the above,m is a strictly decreasing, strictly convex function from [0,∞) to [0, 1]withm(0) =
1. This makes it straightforward to prove the uniqueness of κ and the claim that κ ≥ λ. Recall that we
defined κ as the solution to

κ =
λ

1− qm(κ)
. (88)

As 0 ≤ m(κ) ≤ 1, the denominator of the right-hand-side of this is equation is bounded from below
by one, which shows that any solution must have κ ≥ λ. Indeed, for any finite λ one sees that κ = 0 is
not a solution as λ/(1− q) ̸= 0. The left-hand-side of this equation is obviously strictly increasing in κ,
while the right-hand-side is strictly decreasing, whence the solution is unique.

We now turn our attention to ∂κ/∂q. Implicitly differentiating the self-consistent equation, we have

∂κ

∂q
=

λ

[1− qm(κ)]2

(
m(κ) + qm′(κ)

∂κ

∂q

)
(89)

or

∂κ

∂q
=

(
1− λ

[1− qm(κ)]2
qm′(κ)

)−1
λ

[1− qm(κ)]2
m(κ) (90)

where we remind the reader that m′(κ) < 0. From this, we conclude that ∂κ/∂q > 0.
Now we consider the limit λ ↓ 0. As m(κ) ≤ 1, 1 − qm(κ) has no zeros if q < 1. Therefore,

if q < 1 we have limλ↓0 κ = 0. In contrast, if q > 1 then 1 − qm(κ) has a unique positive root at
m(κ) = 1/q. That this root provides the correct limit in the q > 1 regime follows from the fact that
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λ/(1 − q) is negative, so if κ vanished as some power of λ one would arrive at a contradiction with the
requirement that it is non-negative.

We now finally use the fact thatf(σ, κ) is concave inσ to study the effect of structure in the eigenvalue
distribution. This argument follows [3, 6]. For any κ > 0, Jensen’s inequality implies that

m(κ) = Eσ

[
σ

σ + κ

]
≤ σ̄

σ̄ + κ
(91)

where

σ̄ = Eσ[σ] (92)

with equality if and only if the distribution is a point mass. Under our assumptions, we of course have
that c ≤ σ̄ ≤ C , so this bound is non-vacuous. As a result, we have that

1

1− qm(κ)
≤ 1

1− qσ̄/(σ̄ + κ)
(93)

pointwise in κ, with equality at κ = 0. Both of these functions are decreasing in κ. Therefore, if we let
κ̄ be the unique positive solution to

κ̄ =
λ

1− qσ̄/(σ̄ + κ̄)
, (94)

and let κ solve κ = λ/[1− qm(κ)] as usual, we must have

κ ≤ κ̄. (95)

As the equation for κ̄ is quadratic, it can be solved explicitly, giving

κ̄ =
λ+ (q − 1)σ̄ +

√
[λ+ (q − 1)σ̄]2 + 4σ̄λ

2
. (96)

We can easily work out that

lim
λ↓0

κ̄ =

{
0 q < 1

(q − 1)σ̄ q > 1,
(97)

which agrees with the solution to the limiting equation derived above in this case.
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5.2 Double-descent
The change in the behavior at q = 1 suggests that something interesting might be going on there in terms
of the generalization error. In fact there is: the generalization error diverges.

This behavior is easy to illustrate in the isotropic setting Σ = I, where the generalization error in the
limit λ ↓ 0 can be written down explicitly. From before, we know that in this case we have

lim
λ↓0

κ =

{
0 q < 1

q − 1 q > 1.
(98)

From this, we find that

γ =


q q < 1

1

q
q > 1

(99)

whence

R ∼


q

1− q
η2 + η2 q < 1

1− 1

q
+

1

q − 1
η2 + η2 q > 1.

(100)

This result was first derived by Krogh and Hertz [7] in 1992, using rather different methods!
This divergence can be related to the spectrum of the empirical covariance. As the isotropic case is

interesting in its own right, we give a detailed study of its properties. This gives us more insight into the
emergence of double-descent, and it turns out that we will encounter a few interesting phenomena along
the way. In this case, we can average over isotropically-distributed w∗ (with E[w∗w

⊤
∗ ] = I/d) without

loss of generality as the data are rotation-invariant. Then, one finds even at finite d, p that

Ew∗ [R] = Eσ

[
λ2

(σ + λ)2

]
+ η2qEσ

[
σ

(σ + λ)2

]
+ η2 (101)

where expectation is taken with respect to the distribution of eigenvalues of Σ̂.
It is easy to see that the signal term cannot generate divergences, as the function

λ2

(σ + λ)2
(102)

is bounded from above by 1 for any σ, λ ≥ 0. Moreover, one can check by differentiation that this
function is in fact increasing in λ for any σ > 0, while its derivative vanishes if σ = 0. In contrast,
considering the noise term, the function

σ

(σ + λ)2
(103)

is decreasing in λ for any σ > 0, and its derivative vanishes if σ = 0. We have the pointwise bound

σ

(σ + λ)2
≤ 1

λ
, (104)
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which becomes vacuous as λ ↓ 0. As an aside, we can see that

∂

∂λ
Ew∗ [R] = 2(λ− η2q)Eσ

[
σ2

(σ + λ)2

]
(105)

whence the optimal ridge is

λ∗ = η2q. (106)

From this, we can see that only the noise term can generate possible divergences as λ ↓ 0. Our task is
therefore to study how divergences appear. By the Marchenko-Pastur theorem, the spectral density of Σ̂
tends in the limit d, p → ∞ with d/p → q to

q − 1

q
δ(σ)1q>1 +

√
(σ+ − σ)(σ − σ−)

2πqσ
1σ∈[σ−,σ+], (107)

where

σ± = (1±√
q)2. (108)

It is easy to see that the eigenvalues precisely equal to zero do not contribute to the noise term, and there-
fore may be neglected. As q → 1 there is an accumulation of eigenvalues near zero, which generates the
divergence as λ ↓ 0. One way to see this is to suppose that we first took q → 1 for fixed λ and then took
λ ↓ 0. In this case the density of eigenvalues tends to

1

2π

√
4− σ

σ
1σ∈[0,4] (109)

and we find that

Eσ

[
σ

(σ + λ)2

]
=

2 + λ−
√

(4 + λ)λ

2
√
(4 + λ)λ

(110)

As λ ↓ 0, this diverges as 1/
√
λ. To complete the picture at q = 1, we have a similar explicit formula for

the signal term:

Eσ

[
λ2

(σ + λ)2

]
=

√
λ

4 + λ
. (111)

This leads to a simple tradeoff between the signal and noise terms at q = 1 as a function of λ: the noise
term blows up as 1/

√
λ as λ ↓ 0 and decays as 1/λ2 as λ → ∞, while the signal term decays as

√
λ as

λ ↓ 0 and tends to 1 as λ → ∞.
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5.3 Spectral bias
We now aim to get a more detailed understanding of the inductive bias of ridge regression. We will show,
follwing Canatar et al. [4], that ridge regression has a spectral bias: learning is faster along eigendirections
of Σ with large eigenvalue.

Focusing on the signal term in the generalization error (and making for notational convenience the
assumption that Σ has discrete spectrum; this either follows by working at large but finite d or can be
relaxed at the cost of introducing some additional notation as in [1]), we can write

R ∼
∑
k

σkw
2
∗,kRk (112)

for

Rk =
1

1− γ

κ2

(σk + κ)2
(113)

where we work in a basis where Σ = diag(σ1, σ2, . . .).
The sign of the derivative of Rk with respect to q is not immediately obvious. It is easier to consider

the change in the ratio of two different mode errors. One can easily compute

∂

∂q
log

Rk

Rk′
=

∂

∂q
log

(σk′ + κ)2

(σk + κ)2
(114)

= 2

(
1

σk′ + κ
− 1

σk + κ

)
∂κ

∂q
(115)

= 2
σk − σk′

(σk + κ)(σk′ + κ)

∂κ

∂q
(116)

But, we recall from before that

∂κ

∂q
> 0, (117)

so

∂

∂q
log

Rk

Rk′
> 0 (118)

whenever σk > σk′ . In other words,

∂

∂q
logRk >

∂

∂q
logRk′ (119)

whenever σk > σk′ . As increasing the number of training examples decreases the overparameterization
ratio q, this means that modes with larger eigenvalue are learned faster in the sense of logarithmic deriva-
tives.

We can obtain a stronger result by noting that as q → ∞ we have

lim
q→∞

Rk

Rk′
= lim

q→∞

(σk′ + κ)2

(σk + κ)2
= 1, (120)
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so

log
Rk

Rk′
(121)

is an increasing function that tends to zero as q → ∞. Solving backward from that initial condition, we
conclude that

log
Rk

Rk′
< 0 (122)

whenever σk > σk′ , or, in other words,

Rk < Rk′ . (123)

This proves that the mode errors decrease with increasing eigenvalue magnitude.
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5.4 Scaling laws
Power-law decays in covariance spectra are ubiquitous in natural data. How does ridge regression perform
when faced with such a task? Moreover, one of the salient findings in recent studies of large language
models is the observation of neural scaling laws: most simply, the generalization error decays as a power
law in the number of training examples. An important problem is therefore to study the factors that
determine such scaling laws in simple models. For more details, see [2].

With these motivations in mind, suppose that

σk = k−α (124)

for some α ≥ 0, and

σkw
2
∗,k = k−(1+2αr) (125)

for some r ≥ 0. Here, α is known as the capacity exponent, while r is the source exponent.
A few remarks are in order. First, ifα > 1 then the covariance matrix is trace class in the limit d → ∞

as tr(Σ) =
∑d

k=1 k
−α. Moreover, we have

∥w∗∥22 =
d∑

k=1

k−1−(2r−1)α, (126)

so the norm of w∗ will diverge as d → ∞ unless r > 1/2. Finally, the exponent r measures how much
power remains above mode k in the sense of the norm w⊤Σw:∑

k′>k

σkw
2
∗,k ∼

∫ ∞

k

dk′

(k′)1+2αr
=

1

2αr
k−2αr (127)

One can show that under these assumptions the generalization error of ridge regression will be well-
approximated by a power law with an exponent determined byα, r, and the ridgeλ. Here we will consider
only the ridgeless limit in the overparameterized regime for α > 1 for zero noise (η = 0); see [2] for a
more general analysis. In this case we will take an ordered limit d → ∞ then p → ∞ in our asymptotic;
it can be rigorously justified that the result is actually correct [5].

Under these conditions, we will argue that

R ∼ Cp−2αmin{r,1}, (128)

for some constant C . This argument follows [2].
Using our previous arguments about κ in the overparameterized regime, we have (with η = 0)

R ∼ κ2

1− γ

d∑
k=1

k−(1+2αr)

(k−α + κ)2
(129)

where κ solves

1

p

d∑
k=1

1

1 + kακ
= 1 (130)
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and

γ =
1

p

d∑
k=1

1

(1 + kακ)2
. (131)

Our first task is to analyze the behavior of κ. In the limit d → ∞ we can approximate the (conver-
gent!) sum over integer k by an integral:

∞∑
k=1

1

1 + kακ
∼

∫ ∞

1

dk

1 + kακ
(132)

= κ−1/α

∫ ∞

κ1/α

du

1 + uα
(133)

where we have put u = kκ1/α. We now note that the function∫ ∞

κ1/α

du

1 + uα
(134)

is decreasing in κ, with ∫ ∞

0

du

1 + uα
=

π

α
csc

π

α
> 0. (135)

From this, we have a self-consistent approximate solution

κ ∼ Ap−α (136)

as p → ∞ for A = π
α
csc π

α
. From this, we find that γ tends to a constant:

γ ∼ 1

p

∫ ∞

1

dk

(1 + kακ)2
(137)

=
1

κ1/αp

∫ ∞

κ1/α

du

(1 + uα)2
(138)

∼ 1

A

∫ ∞

A1/αp−1

du

(1 + uα)2
(139)

∼ 1

A

α− 1

α

π

α
csc

π

α
(140)

= 1− 1

α
, (141)

where as before we let u = κ1/αk. Finally, we consider the signal term:

κ2

∞∑
k=1

k−(1+2αr)

(k−α + κ)2
∼ κ2

∫ ∞

1

k−(1+2αr)

(k−α + κ)2
dk (142)

= κ2r

∫ ∞

κ1/α

u−(1+2αr)

(u−α + 1)2
du (143)

∼ A2rp−2αr

∫ ∞

A1/αp−1

u−(1+2αr)

(u−α + 1)2
du (144)

= A2rp−2αr

∫ ∞

A1/αp−1

u−1+2α(1−r)

(1 + uα)2
du. (145)
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We can see from the second-to-last expression that the integral is clearly convergent as u → ∞, but the
behavior near the lower limit requires some examination. Indeed, we see from the last expression that if
r > 1 it becomes divergent as u ↓ 0. If r < 1 the integral tends to a constant and we have

κ2

∞∑
k=1

k−(1+2αr)

(k−α + κ)2
∼ Bp−2αr (146)

for a constant B = A2r
∫∞
0

u−1+2α(1−r)

(1+uα)2
du. To extract the dominant behavior with r > 1 we integrate

by parts, noting that contribution of the u → ∞ boundary term vanishes, and neglect sub-dominant
corrections:

A2rp−2αr

∫ ∞

A1/αp−1

u−1+2α(1−r)

(1 + uα)2
du ∼ Cp−2α

+
A2rp−2αr

(1− r)

∫ ∞

A1/αp−1

u2α(1−r)uα−1

(1 + uα)3
du. (147)

Repeating this process, we see that we will have

C1p
−2α + C2p

−3α + C3p
−4α + . . . (148)

as the j-th iteration yields a term scaling as p−2αr−(j−1)α−2α(1−r) = p−(j+1)α. Thus, the first term dom-
inates as p → ∞, and the signal scales as p−2α.

Combining this with the result we found before for r < 1 and using the fact that γ tends to a con-
stant, we conclude that

R ∼ Cp−2αmin{r,1}, (149)

for a constant C that we do not bother to write down.
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6 Applications to neuroscience
The results developed above have broader applications to neuroscience and machine learning, because
they can provide some answer to the following question: Given a set of features, what functions are easy
to linearly decode, in the sense that the weights can be learned from few examples? The idea of spec-
tral bias provides one answer to this question: we know that target functions that are well-aligned to
eigendirections of Σ with large eigenvalue can be learned efficiently. To measure this notion of align-
ment between a task and the features from which one wants to learn it, Canatar et al. [4] proposed the
cumulative power

Ck =

∑
k′≤k σkw

2
∗,k∑

k′ σkw2
∗,k

. (150)

Under the source-capacity assumptions, we have

∑
k′≤k

σkw
2
∗,k ∼

∫ k

1

dk′

(k′)1+2αr
(151)

= −(k′)−2αr

2αr

∣∣∣∣k′=k

k′=1

(152)

=
1− k−2αr

2αr
, (153)

from which we see that

Ck ∼ 1− k−2αr. (154)

This illustrates the fact that, for fixed α, tasks with larger r are easier.
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