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Abstract

In these lecture notes, we provide a brief, heuristic derivation of the neural network Gaussian
process (NNGP) correspondence using the framework of self-consistent mean field theory.

These notes were originally prepared to accompany a tutorial given at the 2022 HHMI Janelia
Junior Scientist Workshop on Theoretical Neuroscience.

1 Introduction

Consider a deep feedforward neural network with L layers,

hOx) =xeR™ (1
1
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(x) Nry ée( (x))

For simplicity, we focus on the case of networks with no bias terms, as their introduction does not
qualitatively affect our subsequent results.

As is common practice at the level of the prior in Bayesian neural networks, or at initialization in the
context of gradient-descent-based maximum likelihood estimation, assume that the weight distribution
is isotropic and Gaussian

W ~iia N(O,1). 3
We will consider the infinite-width limit
ny, - ,n;, — 09 (4
for fixed input dimension n, depth L, and dataset size P. To be more precise, we let

ny =Na€, (5)

and take the infinite-width limit by taking N — oo for fixed ratios a, € (0, 00). In a practical application,
h®) would be followed by a fixed-dimensional linear readout [11].
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Our goal is to characterize the resulting statistics of the network activities for some set of P inputs
x,,. We allow these inputs, and the input dimension, to be arbitrary up to the condition that the P x P
input Gram matrix

Gyy =X, - X, (6)

w w

is invertible. In particular, we may also take the input dimension to infinity with the layer widths.

Our overall approach follows recent work by Segadlo et al. [7], though our notation and some steps
of the computation hew more closely to our own work in Zavatone-Veth et al. [11]. To study activity
statistics, we consider the moment generating function (MGF)

L P
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where we write
0 _ ¢t
h{? =h(x,) (8)

for brevity. The MGF has the important property that it is equal to unity at zero source, i.e.,

Z =1. ©

(=0}

Moreover, we need only consider sources b) in an infinitesimal neighborhood of zero, as the only
properties of the MGF in which one is interested are its derivatives at zero, which give the moments.

2 Integrating out the weights

The expectation over the weights in (7) is challenging to evaluate because they appear in the iterative
linear-nonlinear function composition by which the network is defined. To unroll these expectations, we
multiply by one. Less glibly, we unpack the definitions of the hidden layer activities by multiplying by
integrals of &-distributions that enforce their definitions:

1
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Then, we have
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We now replace the §-distributions by their Fourier representations
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which yields

2= (15 xp( WAL h“))
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The Gaussian expectations over the weights now factor over layers, and can be easily evaluated:
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At this point, we have an expression for the moment generating function in terms of only the activities
hg) and the corresponding Lagrange multipliers h%):
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However, this expression is not particularly tractable because different layers and neurons are coupled
together.

3 Introducing the kernels

To make progress, we observe that the layers are coupled only through the kernels

KO = nlem(hff)) (). (17)



Therefore, we can decouple layers by introducing these kernels as integration variables. To do so, we
multiply by one:
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Here, we also make use of the fact that

k@1

L o u Xy (21)

is a fixed object depending only on the dataset, which by our assumptions on the data is an invertible
matrix.

Multiplying by one and interchanging the order of integration, we can now factor the integrals over
the hidden layer activities:

dK® dR()
J — 7B exp[NS(KD, ... KB KD, K], (22)
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where we have defined the action

S(KD, ... kKB RO K(L))——lzae Z KORWO 4 = Zzlogz(f)(b(é) KD KOy (23)
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4 Saddle-point evaluation

We now observe that the functions z]@)(b‘(fj), KU1 KO) are identical across j=1,...,n, up to the choice

of source b;(fj)’ Thus, we expect to have

L ny

1 T
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Therefore, the integral over the kernels and the corresponding Lagrange multipliers is a finite (2LP2)
dimensional integral of an integrand of the form exp[NS] for S ~ O(1). In the limit N — oo, we
therefore expect to be able to asymptotically approximate the integral using the method of steepest
descent. Roughly speaking, this allows us to approximate an integral with a sharply peaked integrand
simply by evaluating the integrand at its maximal value. This gives

lim —logZ ~ extr S(K(l),"' ,K(L),K(l)’---’K(L))’ (26)
Nooo N KD, KO RD) . RE)

.....

where the notation extrg) ... xw g g Means that we should evaluate the kernels at a stationary point,
where
0S 68
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Importantly, we only need to solve these saddle-point equations at zero source bg) =0.
From 6§S/6K® = 0, we have

(tz)_ 0 0
ki) =~ LS 8. (28)
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for{ =1,..., L, where we introduce the notation
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Similarly, for £ = 1,...,L —1, from §5/6K) = 0, we have
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while for the final layer we have
ik =0 (31)

from 6S/6K") =0, as z](.g) for{ =1,...,L depends only on K for ¢/ = 1,...,L—1.

5 Solving the saddle-point equations

We claim that KM = ... = K() = 0 is a self-consistent solution. Recalling the saddle-point equations
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this corresponds to showing that dual-variable correlators vanish. As detailed in Helias and Dahmen
[2]’s textbook, this follows from the requirement that Z = 1 when b,(fj) = 0, and can be shown to be



true even before we integrate out the weights and take the large-n limit. Concretely, let us return to the
expression (13) for the partition function in terms of the activities hg) and the corresponding Lagrange

multipliers ﬁg):
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We introduce sources ilA)‘(fj) that couple to the Lagrange multiplier fields, so that

2
2 (0+1)7 (€+1) d
(h; "R, =—————7 (34)
uj J 2(0+1) 4 2.(£+1) L7
8ij ob,; b=b=0
where the augmented partition function is now
L P dh® qh® p
= ko @O . 1O L{HO KO L (O . {O
z Je_]j[ Gy S ZZ h® + A w0 + b0 . AO]
=1pu=1 = =
P
. 1
X Ew ... w) €Xp —IZ Z 0. W(I”})(j)g(h(lZ 1. (35)
:1 u=1

But, for any 13, we have
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hence the augmented partition function obeys the normalization condition pointwise in b. As averaging
over weights is a linear operation, this immediately shows that
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indeed, all correlators involving dual variables alone should vanish when bg) = 0. This implies immedi-
ately that the solution KM = ... = K(!) = 0 is self-consistent for bg) =0

Another way to see that this is the appropriate solution is the following: Suppose we are interested
in computing statistics at layer £. Then, we can set bg/) = 0 for all ' > (. From above, we have that
K = 0. Consider some £ =1,...,L —1, and suppose that we have K+ = 0. Then, we have

g

1
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where the single-site average simplifies to
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Here, we have used the fact that the §-distributions fix h(eﬂ) bl(fjﬂ), and noted that an identical
argument shows that
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By induction, this shows that it is clearly self-consistent for all of the dual variables K for ¢/ > £ to
vanish as bff ) — 0. Moreover, returning to the present problem of computing statistics of hg), we can
see that

p
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is simply the moment generating function of a P-dimensional Gaussian random vector with mean zero
and covariance K,

6 Conclusion: the NNGP

At this point, we have found that
h) ~ N0,k 5,)), (51)



where the kernels are determined through the recurrence

KD =By poxtcny [ 9B ()] (52)
with initial condition
1
0) _
KL = 2% X, (53)

In particular, different neurons in a given layer are statistically independent.

Though our approach here has not been fully mathematically rigorous [1, 7, 11], these results can
be established rigorously [3-5, 8]. They can also be extended to other network architectures [6, 10].
Moreover, one can compute finite-size corrections to the NNGP prior and posterior [7, 9, 11], and in
some cases compute the prior exactly at finite size [12].
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